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1 Introduction

Dimension reduction was originally introduced to give a comprehensive view of the re-
lation between predictor and response in a regression problem. The current practice of
regression analysis is

• Fit a simpler model;

• Check the residual plot;

• If the residual plot does not show a systematic pattern then stop; otherwise continue
to fit a more complex model.

The question is: how to give a comprehensive residual plot?
In the one dimensional case this is not a problem — we can just plot the resid-

ual e versus the predictor x or versus the predicted values Ŷ . More specifically, given
(X1, Y1) . . . , (Xn, Yn), we can first fit a linear regression model

Y = β0 + β1Xi + εi

and find the regression estimator:
{

β̂1 =
∑

(Yi − Ȳ )(Xi − X̄)/
∑

(Xi − X̄)2,
β̂0 = Ȳ − β̂1X̄

Let Ŷi be the predicted values β̂0 + β̂1Xi and ei be the residuals Yi − Ŷi. We can simply
plot ei against Xi. This is called the one-dimensional residual plot.

What should we do if Xi is a vector in Rp? Currently two methods are in frequent
use:

• We can plot ei versus Ŷi (note that Ŷi is always one-dimensional.)

• We can use scatter plot matrix, in which we plot ei against each predictor, and
each predictor against any other predictor, forming a (p + 1) × (p + 1) matrix of
scatter plots.

However, each of these methods are intrinsically marginal — they cannot reflect the
whole picture of the regression relation. Let us see this through two examples.

Example 1.1 One hundred pairs of observations (X1, Y1), . . . , (Xn, Yn) are generated
from some model, which I will show you later. Here Xi ∈ R2. We first fit a simple linear
regression model

Yi = β0 + β1Xi1 + β2Xi2 + εi.

We plot ei versus Ŷi as described before. Show the scatter plot here.
From the scatter plot it appears
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• The residual plot is more or less flat, which suggests that the linear model is
probably adequate;

• There is heteroscedasticity — the variance appears to increase as the level of Y
increases.

Thus from looking at this residual plot alone we are led to the conclusion that probably
a weighted least square would be a good model for this data set. However, this is
completely wrong. The data is generated by the model:

Y =
|X1|

2 + (1.6 + X2)2
+ ε,

where ε X, X is standard bivariate normal, and ε ∼ cN(0, 1) for some constant
c > 0. Show the spin view of the response surface here. The fan-shaped residual is the
appearance of nonlinearity, whereas nonlinearity is completely masked in the residual
plot.

Example 1.2 Again, 100 pairs, (X1, Y1), . . . , (X100, Y100) are generated from some model,
and the scatter plot matrix is produced. Show the scatter plot matrix here. From the
scatter plot matrix the data appear to have the following features:

• Y doesn’t seem to depend on X2

• Y seem to depend on X1 in a nonlinear way

• Y seem to depend on X3 in a nonlinear way.

However, (X, Y ) are generated from the following model:

Y = |X1 + X2|+ ε

where ε (X1, X2, X3), (X1, X2, X3) is multivariate normal with mean 0 and a non-
singular covariance matrix




1 0 0.8
0 0.2 0

0.8 0 1




Note that Y does not depend on X3, and Y does depend on X2. So what is going on here.
Show the hand drawings here. First look at the equi-temperature surfaces; then look at
the equi-density surfaces; explain why the effect of X2 is masked by the collinearity in
X.

So, once again, the scatter plot matrix cannot capture the true relation between X
and Y . What can truly capture the relation between Y and X is the scatter plot of Y
versus X1 + X2. But how can we make this plot before we know that X1 + X2 is the
predictor? This is the question of dimension reduction. The goal is to find X1 + X2

before any regression analysis is performed.
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A more general problem: Suppose

Y = f(βT X) + ε

where β ∈ Rp×q is a matrix of dimension p × q, where q < p; X ε. How to estimate
the direction(s) of β without estimating f? (K. C. Li, JASA (1991, 1992)).

The problem can be posed even more generally: Suppose

Y X|βT X.

How to find the directions of β? Cook (1998).

2 Generalized Linear Models

2.1 Ordinary Least Square

Population derivation. (X1, Y1), . . . , (Xn, Yn) independent copies of (X,Y ). Choose
(α, β) to minimize the loss function

L(α, β) = E(Y − α− βT X)2.

Take derivatives with respect to α and β and set the derivatives to zero and solve for
α, β, it is easy to obtain:

β =
[
E(X − EX)(X −EX)T

]−1
E(X − EX)(Y − EY )

= [var(X)]−1 cov(X, Y )
α = E(Y )− βT E(X).

Here var is the variance matrix of X, and cov is the covariance vector between X and Y .
In our context we frequently express this in the standardized form. That is, if E(X) = 0,
var(X) = I, then the ols vector can be expressed as simply:

β = E(XY ).

Sample version. Notation: W1, . . . , Wn independent copies of (X,Y ). We write

En(W ) = n−1
n∑

i=1

Wi.

The motivation of this notation is that En(W ) is the expectation of W under the em-
pirical distribution Fn, that put equal weight n−1 on each observation Wi. By the same
token, we can define varn(W,V ), covn(W,V ). For example

covn(W,V ) = En((W − EnW )(V − EnV )T ).

In this notation, we have

β̂ = [varn(X)]−1 covn(X, Y ).
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We know that, if the linear model

Y = α + βT X + ε,

where ε X and ε has a finite variance σ2, we have
√

n(β̂ − β) L−→ N(0, A),

where A = σ2 [var(X)]−1. For inference about β, replace var(X) by its sample version
varn(X).

2.2 Nonlinear Least Square

The idea is basically the same. Suppose that

Y = f(βT X) + ε,

where f is known, and ε has a finite variance σ2. Estimate β by minimizing the loss
function

En(Y − f(βT X))2.

In this case, there is no explicit solution and we have to do this numerically, usually by
the Newton-Raphson algorithm. If the mentioned nonlinear model is correct, then we
have

√
n(β̂ − β) L−→ N(0, A−1),

where

A = E
[{f ′(βT X)}2XXT

]
/σ2

Again, for estimating the variance and so on we replace the population mean E by the
sample mean En.

2.3 Generalized Linear Models

Reference: McCullagh & Nelder (1989). Generalized Linear Models, 2nd edition, Chap-
man and Hall.

More generally, (X, Y ) may not be directly related by the linear or nonlinear function
f . For example, if Y is binary, or categorical, and X is continuous, then it is impossible
to describe the relation between (X, Y ) by any of the above models. Furthermore, there
may be heteroscedacity; that is, the variance of Y for a value of X may depend on the
level of X. This is typically the case if Y is categorical.

Again, suppose that (X1, Y1), . . . , (Xn, Yn) are independent copies of (X,Y ). In Gen-
eralized Linear Models we assume that Y |X follows a distribution in the Linear Expo-
nential Family; that is, the conditional density of Y |X is

eθy−b(θ)
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with respect to some measure of y, let’s say νx(y), that may depend on x. Here θ is a
function of x.

An important fact about the linear exponential family.

Theorem 2.1 The function b(t + θ) − b(θ) is the cumulant generating function of the
natural exponential family; that is,

b(θ + t)− b(θ) = log MY |x(t).

Here, MY |x(t) is the moment generating function of the conditional density of Y |X = x:

MY |x(t) = E
[
eθY |X = x

]
.

Proof. Note that

E(etY |X = x) =
∫

ety+θy−b(θ)dνx(y)

=
∫

e(t+θ)y−b(t+θ)+b(t+θ)−b(θ)dνx(y)

= eb(t+θ)−b(θ)

∫
e(t+θ)y−b(t+θ)dνx(y)

= eb(t+θ)−b(θ).

Now take logarithm on both sides to get the desired result. 2

A consequence of this theorem is that

b′(θ) = Eθ(Y |x)
b′′(θ) = varθ(Y |x)

b(k)(θ) = cumθ(Y |x)

for all k = 3, 4, . . ..
In generalized linear models, we assume that Eθ(Y |X) is a function of βT X, which is

called the linear predictor. We right this as µ(βT X). Here µ is called the mean function
and its inverse µ−1 is called the link function. Also, we assume that varθ(Y |X) is also a
function of the linear predictor βT X, and write this function as V (βT X). We call this
function the variance function.

The parameter θ is called the cannonical parameter. Because µ is a function of βT X,
so is the cannonical parameter: from b′(θ) = µ(βT X) we can deduce that

θ = (b′)−1(µ(βT X)) =
(
(b′)−1 ◦ µ

)
(βT X).

Definition 2.1 The link function that makes the map βT X 7→ θ the identity map is
called the natural link function.

What can make this map identity? This is

µ = b′ or µ−1 = (b′)−1.

So in Generalized Linear Models µ−1 = (b′)−1 is the natural link function.
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Example 2.1 Suppose that Y |x is distributed as N(θ, σ2), where, for simplicity, assume
σ is known, and take it to be 1. Then the conditional density of Y |X is

fθ(y|x) =
1√
2π

e−
y2−2θy+θ2

2

= eθy−θ2/2 1√
2π

e−
y2

2 .

So the conditional density of Y |x is

eθy−θ2/2

with respect to

dνx(y) =
1√
2π

e−y2/2dy,

where dy is the Lebesgue measure. (In this case νx(y) does not depend on x). The
cumulant generating function is b(θ) = θ2/2. Thus b′(θ) = θ is an indentity mapping.
So the natural link function is the identity mapping µ−1(t) = t.

Example 2.2 Suppose that Y |x has a Poisson distribution Po(λ). Then

fλ(y|x) =
λy

y!
e−λ = ey log λ−λ 1

y!
= eyθ−eθ 1

y!
.

So the density of Y |x is

eθy−eθ

with respect to the measure

dνx(y) =
1
y!

dy.

Here, dy is the counting measure. The cumulant generating function b(θ) is eθ. So
b′(θ) = eθ, and the link function is µ−1(t) = log(t). So the model for the mean function
is

E(Y |x) = eβT x.

Because b′′(θ) = eθ, the model for variance function is also

var(Y |x) = eβT x.

This is called the log-linear or Poisson regression model.
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Example 2.3 Suppose that the conditional distribution of Y |x is binomial(p). Then

fp(y|x) =
(

n
y

)
py(1− p)n−y

= e
y log p

1−p
+n log(1−p)

(
n
y

)

= eθy−n log(1+eθ)

(
n
y

)
.

So the conditional density of Y |x is

eθ−n log(1+eθ)

with respect to the measure

dνx(y) =
(

n
y

)
dy,

where dy is the counting measure on {0, 1, . . . , n}. The cumulant generating function is

b(θ) = n log(1 + eθ).

Hence

b′(θ) =
neθ

1 + eθ
.

The natural link function is

µ−1(t) = log
t/n

1− t/n
.

The mean and variance functions are

E(Y |x) =
neβT x

1 + eβT x

var(Y |x) =
neβT x

(1 + eβT x)2
.

This model is called the logistic regression or logit regression.
Estimation for generalized linear models. The log-likelihood is for a single observation

is

yθ − b(θ).

The score function (the derivative of the log likelihood function) is

θ′(βT X)Y X − b′(θ(βT X))θ′(βT X)X
= Xθ′(βT X)(Y − b′(βT X)).
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However, recall that

(b′ ◦ θ)(s) = µ(s).

Taking derivative on both sides to obtain

b′′(θ(s))θ′(s) = µ′(s).

Therefore,

θ′(s) = µ′(s)/b′′(θ(s)) = µ′(s)/V (s).

Therefore the score function can be rewritten, in terms of the mean and variance function,
as

{
Xµ′(βT X)/V (βX)

}
(Y − µ(βT X)).

Summing up over the n observations, we have the likelihood equation
n∑

i=1

{
Xiµ

′(βT Xi)/V (βT Xi)
}

(Yi − µ(βT Xi)) = 0

The estimator β̂ is the solution to this equation. Again, usually there is no explicit
solution to this equation, but this can be solved a numerical method such as the Newton-
Raphson algorithm. Under regularity conditions, we have the following convergence:

√
n(β̂ − β) L−→ N(0, I−1(β)),

where I(β) is the Fisher information matrix

I(β) = E

[{µ′(βT X)}2

V (βT X)
XXT

]
.

In practice, we replace the Fisher information by its sample estimate:

En

[
{µ′(β̂T X)}2

V (β̂T X)
XXT

]
,

which converges at the
√

n-rate the population version I(β).
If we use the natural link, then the likelihood equation can be further simplified.

Recall that

b′′(θ(s))θ′(s) = µ′(s).

Under the natural link, θ(s) = s and therefore θ′(s) = 1. Recall that b′′(θ(s)) = V (s).
So we have

V (s) = µ′(s).

Thus the likelihood equation is
n∑

i=1

Xi

(
Yi − µ(βT Xi)

)
= 0.

Correspondly, the Fisher information is simplified to

I(β) = E
[
µ′(βT X)XXT

]
.
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3 Dimension reduction: some basic concepts

3.1 Central Space

As we explained before, the goal of dimension reduction is to seek β ∈ Rp×q (q < p),
such that

Y X|βT X.

Note that, if A is any q × q non-singular matrix, then βT X and AT βT X has one-to-one
correspondence. Therefore, Y X|βT X if and only if Y X|(βA)T X. Note that β and
βA have the same column space. So we define the column space of β as a dimension
reduction subspace. For a matrix A we denote by S(A) the subspace spanned by the
columns of A.

Also note that, if γ is another matrix such that S(β) ⊂ S(γ), then βT X is a measur-
able function of γT X. Thus Y X|βT X implies Y X|γT X. In other words, if S1 is
a dimension reduction space and S1 ⊂ S2, then S2 is also a dimension reduction space.
Therefore, we are naturally interested in the smallest dimension reduction space, which
achieves the maximal reduction of the dimension of X. Under mild regularity conditions,
the intersection of all dimension reduction spaces is itself a dimension reduction space.
This space is called the Central Space.

Definition 3.1 The Central Space for (X, Y ) is the intersection of all dimension reduc-
tion spaces for (X, Y ). This space is written as SY |X .

Reference: Cook (1994, 1998).
Thus the goal of dimension reduction is to find the Central Space SY |X .

3.2 Invariance of central space

An invariance property of the dimension reduction space.

Theorem 3.1 Let SY |X be the Central Space for (X, Y ). Let Z = AX + b. Then

SY |Z = A−TSY |X .

Proof. Let β be a p by q matrix whose columns form a basis in SY |X . Then

Y X|βT X.

Because X = A−1(Z − b), this means that

Y A−1(Z − b)|βT A−1(Z − b).

This is equivalent to

Y Z|βT A−1Z.
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Or

Y Z|(A−T β)T Z.

Hence A−TSY |X is a dimension reduction space for (Z, Y ). Consequently SY |Z ⊂ SY |X .
The inverse inclusion can be proved similarly. 2

In future discussions, it will prove convenient to work with standardized X. Let
µ = E(X) and Σ = var(X). Let

Z = Σ−1/2(X − µ).

If we can find SY |Z . Then we can use the relation X = Σ1/2Z+µ and the above invariance
property to derive SY |X = Σ−1/2SY |Z . Hence, we will, without loss of generality, make
the following assumption.

Assumption 3.1 Throughout the following discussion we will assume that

E(X) = 0 var(X) = Ip.

3.3 Sufficient plot

Once we know the Central Space, we can construct a comprehensive scatter plot or
residual plot that do not lose information as the scatter matrix plot or residual versus
predictor plot. Let β = (β1, . . . , βq) be a basis for the central space. The sufficient plot is
plotting Y or e versus βT

1 X, . . . , βT
q X). In one dimensional case, this is simply a scatter

plot. In two dimensional case, it is the plot of Y versus βT
1 X, βT

2 X. We can use a spin
software to have a comprehensive view of the data. Usually this will suffice for most of
the data analysis.

For example, returning to Example 1.2. The model is

Y = |X1 + X3|+ ε.

Thus the central space is spanned by (1, 0, 1). The sufficient plot is the scatter plot of
Y versus X1 + X3. Show this plot here.

The lower dimension central space has meanings.

• 0-D Structure. If q = 0. Then that means that Y X; that is, there is no
relation between X and Y . Thus we can use the inference procedure that we will
explain later on to test whether X and Y independent without estimating the
response surface.

• 1-D Structure. This is the case where Y X|βT X where β is a vector. Many
regression problems have 1-D structure. For example, all the generalized linear
models are of 1-D structure. The so called Single Index model in econometrics
includes precisely this instance of conditional independence. As a special case,
consider

Y = f(βT X) + σ(βT X)ε
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That is, both the mean and the variance are functions of βT X. This is 1-D struc-
ture.

• 2-D Structure. For example, this occurs when the mean and the variance depends
on 2 different linear combinations of X; that is

Y = f(βT
1 X) + σ(βT

2 X)ε.

4 Estimation of CS: OLS

4.1 Linear Conditional Mean

We will make the following key assumption, which we call the linear conditional mean
assumption.

Assumption 4.1 Let β be a Rp×q be a matrix whose columns form an orthonormal
basis in SY |X . We will assume that E(X|βT X) is a linear function of X; that is, the
conditional mean of X given βT X is linear in X.

We first make some notes on the intuitions and implications of this assumption.

• In practice, we do not know β at the outset. So we typically replace this assumption
by E(X|γT X) is linear in X for all γ ∈ Rp×k, k = 1, . . . , p. This is equivalent to
assuming that X has an elliptical distribution. Since X is already standardized,
this is equivalent to saying that X has a circular contoured density. In other words,
the density of X depends on X only through ‖X‖, the Euclidean norm of X.

• Elliptically contoured distribution can often be achieved by appropriate transfor-
mation of the original data; for example, by taking a certain power of the data, or
take logarithm of the data. This is more successful for some cases than for others.
I will explain this in detail through an example in a short while.

• In regression analysis it is always preferable to transform X rather than transform-
ing X, because transforming X does not change the interpretation of the response.
Transforming X does not change the interpretation — because we are looking for
a function of X any way.

• Hall & K. C. Li (1993) demonstrated that, if the original dimension p is much
larger than the structural dimension q, then E(X|βT X) is approximately linear in
X. The argument is that taking conditional example is like taking average. When
you take average over a large number of variables, then the result behaves more
or less like multivariate normal. But multivariate normal is elliptically-contoured
distribution. Therefore the linear conditional mean assumption should hold roughly
for the conditional expectation.
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4.2 Transformation through examples

Example 4.1 Western economists more or less agree that the living standard of a coun-
try can be measured by how much labour hours is need for buying a big mac. There
is a fast food chain called Berger King in America. A big mac is a hamburger sold at
burger king. The fewer labor hours needed for buying a big mac the higher the living
standard. Reversely, if a country need a lot of labor hours to buy a big mac, then the
living standard of that country is low. So there are a lot of studies about big mac; the
following data is collected from one such studies.

Data taken from Rudolf Enz, ”Prices and Earnings Around the Globe”, 1991 edition,
Published by the Union Bank of Switzerland. The data give average values in 1991 on
several economic indicators for 45 world cities. All prices are in US dollars, using currency
conversion at the time of publication.

Variable Meaning
BigMac Min labor to buy a BigMac and fries
Bread Min labor to buy 1 kg bread
BusFare Lowest cost of 10k public transit
EngSal Electrical eng annual salary, 1000s
EngTax Tax rate paid by engineer
Service Annual cost of 19 services
TeachSal Primary teacher salary, 1000s
TeachTax Tax rate paid by primary teacher
VacDays Ave days vacation per year
WorkHrs Ave hours worked per year
City Name of city

Note that before transformation, the data look quite nonlinear and non elliptical.
However, it seems that taking logarithm, on all or on some of the variables, does a good
job in transforming the data into elliptically-contoured distribution.

Example 4.2 Ozone data. There are 330 measurements of the ozone levels as well as 8
covariates. This is composed of the following variables:

Variables Meaning
Height Vandenburg 500 millibar height (m)
Humidity humidity, percent
InversionHt Inversion base height, feet
Ozone Ozone conc., ppm, at Sandbug AFB.
Pressure Daggett pressure gradient (mm Hg)
Temp2 inversion base temperature, degrees F .
Temperature Temperature F. (max?).
Visibility Visibility (miles)
WindSpeed wind speed, mph
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For the purpose of demonstration, we will exclude windspeed, visibility, and Inver-
sionHt. Show here the scatter plot matrix and the effect of transformation. Again, the
original data looks quite non-elliptical, but after transformation the situation is much
improved. Logarithm seems to work well for all variables except humidity, for which a
power transformation (about 1.75) seems to work better.

4.3 Conditional mean & projection

4.3.1 Conditionaal mean as L-2 projection

Consider two random variables U and V . Let P be the joint distribution of (U, V ). We
will consider the class of all functions of f(u, v) that are square-integrable with respect
to P . This class is usually denoted by L2(P ), which reads “L-2 space with respect to
the measure P .”

The L2(P ) space is a linear space; if f1 is square-integrable and f2 is also square
integrable, then f1 + f2 is also squared integrable. This is because

∫
(f1 + f2)2dP =

∫
f2
1 dP + 2

∫
f1f2dP +

∫
f2
2 dP.

The first and the last term are finite. The second term, by the Cauchy-Schwarz inequality,
(∫

f1f2dP

)2

≤
∫

f2
1 dP

∫
f2
2 dP.

Because f1 and f2 are square-integrable, the right hand side is finite. Also, it is obvious
that, if f is square-integrable, then so is αf . Thus L2(P ) is a linear space.

Moreover, we can define in L2(P ) the inner product

〈f1, f2〉 =
∫

f1f2dP = E(f1(X)f2(X)).

It is easy to show that this is an inner product in the technical sense of the word. From
the inner product we can define the length of a random variable in L2(P ), as follows:

‖f‖2 =
∫

f2dP = Ef2(X).

Finally, it can be shown that L2(P ) is a closed set in terms of the metric ‖ · ‖ just
defined. That is, any Cauchy-sequence in L2(P ) converges, in terms of ‖·‖ to an element
of L2(P ).

In summary, L2(P ) is a Hilbert space, which is an extension of the Euclidean space
(in which we live), and inherits almost all the nice properties of a Euclidean space.
Most importantly, it inherits the properties such as orthogonality and projection. Two
functions, or two random variables, f1(X) and f2(X), in L2(P ) are orthogonal if

〈f1, f2〉 = 0.

In this case, we will write f1 ⊥ f2. If L is a subset of L2(P ) and f is orthogonal to every
element in L, then we write f ⊥ L. That L2(P ) also inherits from a Euclidean space the
property of projection is shown by the following theorem.
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Theorem 4.1 If L is a (closed) linear subspace of L2(P ), and if f is any element
in L2(P ). Then there is a (almost everywhere P ) unique element f0 in L, such that
f − f0 ⊥ L. In other words,

〈f − f0, h〉 = 0

for all h in L2(P ). Moreover, the element f0 is the (almost everywhere P unique) element
in L that is the closest to L2(P ). That is

‖f − f0‖ ≤ ‖f − h‖

for all h in L.

Definition 4.1 This unique element in L is called the orthogonal projection (the shadow
of the sun at noon) of the random variable f onto L, and will be written as PL(f).

In this formulation the conditional expectation E(U |V ) can be viewed as the orthog-
onal projection of the random variable U onto the space of V .

Let P be the joint distribution of (U, V ) and L2(P ) be the class of all functions of
(u, v) that are square-integrable with respect to P . Let Q be the marginal distribution of
V and let L2(Q) be the class of all functions of V that are square-integrable with respect
to Q. It turns out the conditional expectation E(U |V ) is nothing but the orthogonal
projection of U onto L2(Q).

Theorem 4.2

E(U |V ) = PL2(Q)(U).

Proof. By Theorem 4.1, it suffices to show that U −E(U |V ) ⊥ L2(Q). That is, for any
h(V ) in L2(Q), we have

E [(U −E(U |V ))h(V )] = 0. (1)

Note that

E(Uh(V )) = E [E(Uh(V ))|V ]
= E [E(U |V )h(V )] .

Substract the right hand side from the left hand side gives (1), as desired. 2

4.3.2 Projection in Euclidean space

Now let us turn to a simpler problem. Consider the Euclidean space Rp. Let v be any
vector in Rp. It is easy to see that Rp is a linear space. Let’s define the inner product in
Rp as

〈v1, v2〉 = aT b.
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It is well known that Rp, together with this inner product, is a Hilbert space. In this
subsection we will study the orthogonal projection in this Hilbert space.

Let β1, . . . , βq be an orthonormal subset of Rp. (Recall that q < p. ) and let v be
any vector in Rp. We are interested in the projection of v onto the subspace spanned by
β1, . . . , βq. Let β be the matrix (β1, . . . , βq). Let S(β) be the subspace spanned by the
vectors β1, . . . , βq.

Theorem 4.3

PS(β)(v) = ββT v.

Proof. By Theorem 4.1, it suffices to show that for any vector h in S(β), we have

(v − ββT v)T h = 0. (2)

Because h is a vector in S(β), it is a linear combination of the vectors β1, . . . , βq. In
other words, h = βw for some vector w in Rq. Note that

(ββT v)T h = (ββT v)T βw

= vT ββT βw

= vT βw

= vT h.

Subtract the left hand side from the right hand side gives (2), as desired. 2

The matrix ββT is called the projection matrix, and will be written as Pβ.

4.3.3 Conditional mean as Euclidean projection

The geometric implication of the linear conditional mean assumption is that the con-
ditional expectation E(X|βT X) coincides with Pβ(X). That is, the L-2 projection and
Euclidean projection are one and the same.

Theorem 4.4 If Assumption 4.1 holds, then

E(X|βT X) = Pβ(X).

Proof. Let ei be the vector in Rp whose ith element is 1 and the rest elements are 0.
We need to show that

E(Xi|βT X) = eT
i Pβ(X).

Because E(Xi|βT X) is linear in X, it can be written as ai + vT
i βT X for some ai ∈ R

and vi ∈ Rq. However, because

E
[
E(Xi|βT X)

]
= E(Xi) = 0,
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we have

E(ai + vT
i βT X) = ai = 0.

Hence

E(Xi|βT X) = vT
i βT X.

Let Q be the distribution of βT X and L2(Q) be the class of all the square-integrable
functions of βT X. Because, by Theorem 4.2, E(Xi|βT X) is the orthogonal projection
onto L2(Q), we have, for any h(βT X) ∈ L2(Q),

E
[
(Xi − E(Xi|βT X))h(βT X)

]
= 0.

In particular, take h(βT X) to be βT
1 X, . . . , βT

q X, we have, for any r = 1, . . . , q,

E
[
(Xi − vT

i βT X)βT
r X

]
= 0.

Now let V be the matrix (v1, . . . , vp). The above equations (pq of them) can be re-written
in the matrix form

E
[
(X − V T βT X)XT β

]
= 0.

Now apply the relation E(XXT ) = Ip to obtain

β − V T βT β = 0.

But recall that βT β = Iq. Thus V = βT . It follows that

E(X|βT X) = V T βT X = ββT X = PβX,

as desired. 2

4.3.4 Conditional mean as a self-adjoint operator

Let W be a random variable and let A = E(·|W ); that is A is the mapping U 7→ E(U |W ).
Then, it is easy to see that A is a linear operator from L2(P ) to L2(P ). In fact, as we have
already shown, A is a projection operator. Now any projection operator is self-adjoint.
That is, in this case, let U and V be two random variables, then

〈AU, V 〉 = 〈U,AV 〉.
In other words,

E[E(U |W )V ] = E[UE(V |W )].

This can also be proved directly, as follows:

E [E(U |W )V ] = E {E [E(U |W )V |W ]}
= E [E(U |W )E(V |W )]
= E {E [UE(V |W )|W ]}
= E [UE(V |W )] ,

as desire.
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4.4 The OLS estimator of CS

4.4.1 Population development

We first observe a simple fact.

Lemma 4.1 If U V |W , then

E(U |V,W ) = E(U |W ).

Proof. Let fU |V W (u|v, w) be the conditional density of U |V, W , and let fU |W (u|v) be
the conditional density of U |V . Then,

fU |V W =
fUV W

fV W
=

fUV |W fW

fV W
=

fU |W fV |W
fV |W

= fU |W ,

from which the asserted result follows easily. 2

As we mentioned before, when E(X) = 0, var(X) = Ip, then the population OLS
vector is simply E(XY ).

Theorem 4.5 Suppose that Assumption 4.1 holds. Then

E(XY ) ∈ SY |X

Proof. Note that

E(XY ) = E(E(XY |X)) = E(XE(Y |X)). (3)

However, because X Y |βT X, we have, by Lemma 4.1,

E(Y |X) = E(Y |X,βT X) = E(Y |βT X).

Therefore, the right hand side of (3) is E(XE(Y |βT X)). However, because conditional
expectation is a self-adjoint operator, we have

E(XE(Y |βT X)) = E(E(X|βT X)Y ).

Now recall that, under Assumption 4.1, the L-2 projection coincides with the Euclidean
projection, as shown in Theorem 4.4, we have

E(E(X|βT X)Y ) = E(Pβ(X)Y ) = PβE(XY ).

Thus

E(XY ) = PβE(XY ).

In other words, E(XY ) equals its projection onto S(β). Therefore E(XY ) must be in
the range of projection Pβ, which is SY |X 2
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Now return to Generalized Linear Models. Suppose Y |X has density

eθy−b(θ)

with respect to some measure ν(y). Recall that, in generalized linear models,

θ =
[
(b′)−1 ◦ µ

]
(βT X).

Note that here β is a p-dimensional vector instead of a matrix. It follows that f(Y |X) is a
function of βT X and Y . So fY |X = fY |βT X . In other words, Y X|βT X. Consequently,
E(XY ) ∈ S(β). Therefore we have the following theorem, which we have mentioned at
the beginning of this series.

Theorem 4.6 Suppose that Y |X follows a generalized linear model as we have described.
Suppose that Assumption 4.1 holds. Then E(XY ) is proportional to β (regardless of the
link function µ−1).

This is essentially (in fact, more general) the result stated in Li & Duan (1989), one
of the first papers in dimension reduction.

The intuition of this theorem is clear. Show the intuition by illustrating via a piece
of paper here.

4.4.2 Estimating procedure

At the population version, the estimating procedure can be described as follows. First,
standardize X to be Z = Σ−1/2(X − µ). Estimate a vector in SY |Z . Then transform
back to SY |X = Σ−1/2SY |Z . At the sample level, we follow these steps.

• Compute

Σ̂ = varn(X), µ̂ = En(X).

Standardize X1, . . . , Xn to be

Ẑi = Σ̂−1/2(Xi − µ̂).

• Center Y1, . . . , Yn to Ŷi = Yi − En(Y ).

• Let γ̂ be the the vector En(ẐŶ ). This is an estimator of E(ZY ), a vector in SY |Z .

• Let β̂ = Σ̂−1/2γ̂, and this is an estimator of SY |X .

In this instance,

β̂ = Σ̂−1/2γ̂

= Σ̂−1/2Σ̂−1/2En(X − En(X))En(Y − En(Y ))
= [varn(X)]−1 covn(X, Y ).
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This is exactly the OLS estimator of β, as described in Chapter 1.
Note that

En(X −En(X))(Y − En(Y )) = En(XY )− En(X)En(Y )
= E(XY )−E(X)E(Y ) + Op(n−1/2)

= cov(X, Y ) + Op(n−1/2).

And, similarly,

varn(X) = var(X) + Op(n−1/2).

So we have

β̂ − β = Op(n−1/2).

Thus we have proved the following theorem.

Theorem 4.7 The OLS estimator for SY |X is
√

n-consistent. In other words, it con-
verges at

√
n-rate to a vector that belongs to SY |X .

4.4.3 A Simulated Example

Example 4.3 Let n = 100, and (X1, Y1), . . . , (Xn, Yn) be independent copies of (X, Y ).
Here X is a random vector in Rp, where p = 10. We write Xi as N(0, Ip) and generate
Y according to the following model:

Yi = eXi,1 + εi,

where ε1, . . . , εn are iid 0.2N(0, 1).
Note that the central space in this example is the one spanned by the vector (1, 0, . . . , 0)T .

We now compute the OLS estimator. The components of β̂ is calculated to be

1.821 0.005 −0.170 0.085 0.014

−0.120 −0.147 −0.086 −0.216 −0.033

We see that the first component is large, whereas the other component is much smaller.
Thus this vector is roughly aligned with (1, 0, . . . , 0), the vector that spans the central
space.

4.5 Refinement of the OLS property

Reference B. Li, D.R. Cook, F. Chiaromonte (2002, Ann. Statist.).
In this section we will study a special case of a theorem in this paper, which relax

the Linear Conditional Mean assumption 4.1. Recall that in Assumption 4.1, we assume
that E(X|βT X) is linear in X. Because we do not know β in advance, we have to assume
this holds for any matrix γ; that is, we need to assume elliptically-contoured distribution
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for X. Let η = E(XY ). In the previous section we showed that η belongs to the central
space under Assumption 4.1. So it is natural to ask, would it be sufficient to require
E(X|ηT X) be linear in X? If this is true then it would bring big advantage — because,
we can estimate η by OLS, and we can actually check if X is linear in this direction. In
this section we will show that, for all generalized linear models with natural link, this is
indeed the case; that is, if E(X|ηT X) is linear in η, then η belongs to the central space.

First we state the following lemma.

Lemma 4.2 The cumulant function b(θ) for a linear exponential family is a convex
function.

Proof. Suppose Y |θ has density eθy−b(θ) with respect to measure ν(y). Then, as we
have seen before, b′′(θ) = varθ(Y ) > 0. Therefore b is a convex function. 2

Theorem 4.8 Suppose that Y |X has a density in linear exponential family; that is,
fθ(y|x) is eθy−b(θ) with respect to ν(y). Suppose, in the generalized linear model E(Y |βT X) =
µ(βT X), the link function is the natural link µ−1 = (b′)−1. Let η be the OLS vector
E(XY ). Suppose that E(X|ηT X) is linear in X. Then SY |X = span(η).

Proof. Let f(x, y, β) denote the joint density of (X,Y ), and let R(ξ) = E log f(X, Y, ξ).
First, it is easy to see that β is the unique minimizer of the expected log likelihood

E log f(X, Y, ξ)− E log f(X, Y, β) = E log
[

f(X,Y, ξ)
f(X, Y, β)

]

< log E

[
f(X, Y, ξ)
f(X, Y, β)

]
= log(1) = 0.

Now let ξ be any vector in Rp and let Pη = ηηT be the projection matrix onto η.
Because we have used the natural link function the conditional density fβ(y|x) is of the
form eβT xy−b(βT x). Hence,

R(ξ) = E
[
ξT XY − b(ξT X)

]

= ξT E(XY )−Eb(ξT X)
= ξT η − Eb(ξT X).

Because Pη is the projection onto span(η), we have η = Pηη. Moreover, because b is
convex, we have, by Jensen’s inequality,

Eb(ξT X) = E{E[b(ξT )|ηT X]}
≥ Eb(E(ξT X|ηT X)).

By the assumption that E(X|ηT X) is linear in X, and Theorem 4.4, the L-2 projec-
tion and the Euclidean projection are on and the same; that is, E(X|ηT X) = Pη(X).
Therefore,

R(ξ) ≤ ξT Pηη −Eb(ξT PηX) = R(Pηξ).
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In other words, for any ξ in Rp we can always find a vector in the direction of η that
increases the function R. Because β is the unique maximizer of R(ξ) we therefore know
that it must be in the direction of η. This means that η and β are in the same direction.
2

5 Principle Hessian Directions

The biggest disadvantage of OLS is that it can only estimate at most one direction in
the central space. Thus, if the central space is more than one dimensional, OLS cannot
provide a comprehensive estimate. In this section we will introduce a method that can
estimate more than one directions in the central space. For this purpose we need to
make one more assumption.

5.1 Constant conditional variance

Assumption 5.1 We assume that the conditional variance

var(X|βT X)

is a non-random matrix.

Note that this assumption is satisfied if X is multivariate normal. The next Lemma
gives an important consequence of this assumption.

Lemma 5.1 Let Pβ = ββT be the projection matrix onto the column space of β. Let
Qβ = Ip − Pβ be the projection on to the orthogonal complement of S(β). Then

var(X|βT X) = Qβ.

Proof. By the famous EV-VE formula:

Ip = var(X) = E[ var(X|βT X)] + var[E(X|βT X)] (4)

Because var(X|βT X) is nonrandom, the first term on the right hand side is simply
var(Y |βT X). By Theorem 4.4, the second term on the right hand side is

var[E(X|βT X)] = var(PβX)
= PβIpPβ

= Pβ.

Hence (4) becomes

Ip = var(X|βT X) + Pβ.

Now subtract both sides by Pβ to obtain the desired result. 2

This condition is quite strong. There is a result saying that if var(X|γT X) is constant
for all γ then X is necessarily multivariate normal. Later on we will introduce a method
that does not depend on this assumption.
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5.2 pHd: population development

Let α be the OLS vector E(XY ). Let e be the residual from the simple linear regression;
that is

e = Y − αT X.

Note that, in the standardized coordinate, the intersection of the OLS is zero, because
it is E(Y )− αT E(X), which is zero. That is why there is no constant term in e.

Definition 5.1 The matrix H1 = E(Y XXT ) is called the y-based Hessian matrix, the
matrix H2 = E(eXXT ) is called the e-based Hessian matrix.

The central result of this section is that the column space of a Hessian matrix (either
one) is a subspace of the central space.

Theorem 5.1 Suppose that Assumptions 4.1 and 5.1 hold. Then the column space of
H1 is a subspace of SY |X .

Proof. Note that

E(Y XXT ) = E[E(Y |X)XXT ]

Because Y X|βT X, we have, by Lemma 4.1 E(Y |X) = E(Y |βT X). Therefore, the
right hand side becomes

E[E(Y |βT X)XXT ].

Because conditional expectation is a self-adjoint operator, the above becomes:

E[Y E(XXT |βT X)]. (5)

Now let us analyze the inner conditional expectation.

E(XXT |βT X) = var(X|βT X) + E(X|βT X)E(XT |βT X).

By Lemma 5.1, the first term on the right hand side is Qβ. The Theorem 4.4, the second
term is PβXXT Pβ. Thus the expectation in (5) becomes

E[Y E(XXT |βT X)] = E[Y (Qβ + PβXXT Pβ)]
= E(Y )Qβ + PβE(Y XXT )Pβ

= PβH1Pβ.

Thus we have proved H1 = PβH1Pβ. Now the right hand side is of the form Pβw where
w is a vector in Rp. Thus the columns of H1 are linear combinations of the column
vectors of Pβ, which must be in S(β). This completes the proof. 2

With a slight modification of the proof, we can show that the same conclusion holds
for H2 as well.
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Theorem 5.2 Suppose that Assumptions 4.1 and 5.1 hold. Then the columns space of
H2 is a subspace of SY |X .

Proof. By inspecting the proof of Theorem 5.1, the only additional thing we need to
prove is that

E(e|X) = E(e|βT X).

Now

E(e|X) = E(Y − αT X|X)
= E(Y |X)− αT X.

As argued before, the first term on the right hand side is E(Y |βT X). Because of As-
sumption 4.1, and applying Theorem 4.5, we know α ∈ SY |X . Therefore, α = Pβα.
Therefore, the right hand side of the above expression becomes

E(e|X) = E(Y |βT X)− αT PβX.

However, by Assumption 4.1 and Theorem 4.4 we have PβX = E(X|βT X). So the right
hand side is

E(Y |βT X)− αT E(X|βT X) = E(e|βT X),

as desired. 2

5.3 Sample estimator of pHd

Again, we use the idea of first transforming to Z, estimating SY |Z , and then transforming
back to SY |X . We summarize the computation into the following steps.

• First, standardize X1, . . . , Xn to Ẑ1, . . . , Ẑn, and center Y1, . . . , Yn to Ŷ1, . . . , Ŷn, as
described in the algorithm for OLS.

• Compute the OLS of Ŷ versus Ẑ:

α̂ =
[
varn(Ẑ)

]−1
covn(Ẑ, Ŷ )

α̂0 = En(Ŷ )− α̂T En(X̂).

Much simplification can be achieved:

varn(Ẑ) = Ip

covn(X̂, Ŷ ) = En(X̂Ŷ )−En(X̂)En(Ŷ ) = En(X̂Ŷ ).

Also, because En(Ŷ ) = 0, En(X̂) = 0, we have α̂0 = 0. So the OLS for Ẑ and Ŷ is
simply En(ẐŶ ). Compute the sample residual

êi = Ŷi − α̂T X̂i.
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• Construct the e-based and y-based Hessian matrix:

Ĥ1 = En

(
Ŷ ẐẐT

)
Ĥ2 = En

(
êẐẐT

)

• Assume, for now, we know the structural dimension q. Let γ̂1, . . . , γ̂q be the q

eigenvectors corresponding to the q largest eigenvalues of Ĥ1Ĥ
T
1 ; and let δ̂1, . . . , δ̂q

be the q eigenvectors corresponding to the largest eigenvalues of Ĥ2Ĥ
T
2 . We use

γ̂1, . . . , γ̂q or δ̂1, . . . , δ̂q as the estimator of SY |Z .

• Let

β̂i = Σ̂−1/2γ̂i

η̂i = Σ̂−1/2δ̂i

We will use {β̂1, . . . , β̂q} or {η̂1, . . . , η̂q} as the estimator of SY |X .

For now we have assumed that the structural dimension is known. In practice this
must be determined by the data. Later on (if time permits) we will introduce a test that
will help to determine the structural dimension.

Because this method is based on the eigenvectors of the Hessian matrix corresponding
to their largest eigenvalues, or the principle directions of the Hessian matrices, we call
this method the principle Hessian directions, or pHd.

5.4 Convergence rate of pHd estimators

We will only analyze the y-based pHd; the analysis for the e-based pHd is completely
parallel.

First, we show that γ̂1, . . . , γ̂q converge at
√

n-rate to γ1, . . . , γq, the eigenvectors of
H1H

T
1 corresponding to its nonzero eigenvalues. For this it suffices to show that Ĥ1Ĥ

T
1

converges at
√

n-rate to H1H
T
1 . Note that matrix En(Ŷ ẐẐT ) is

Σ̂−1/2En(Y −EnY )(X − EnX)(X − EnX)T Σ̂−1/2.

The central part can be decomposed into eight terms:

En(Y XXT )−En(Y X)En(XT )
−En(Y XT )En(X) + En(Y )En(X)En(XT )
+En(Y )En(XXT ) + En(Y )En(X)En(XT )
+En(Y )En(X)En(XT ) + En(Y )En(X)En(XT )
= En(XXT Y ) + Op(n−1/2).

As we have seen before, Σ̂ = Σ + Op(n−1/2) = I + (n−1/2), and so

En(Ŷ ẐẐT ) = (I + Op(n−1/2))(En(XXT Y ) + Op(n−1/2))

(I + Op(n−1/2))

= En(ZZT Y ) + Op(n−1/2).
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Thus we have shown that γ̂1, . . . , γ̂q converges at
√

n-rate to γ1, . . . , γq. Now

β̂i = Σ̂−1/2γ̂i

= (I + Op(n−1/2))(γi + Op(n−1/2))

= γi + Op(n−1/2) = βi + Op(n−1/2),

as desired.

Theorem 5.3 If Assumptions 4.1 and 5.1 hold, then β̂1, . . . , β̂q converges at
√

n-rate to
a set of vectors that belong to SY |X .

5.5 Determine q

5.5.1 Formulation of hypothesis

In this section we discuss how to use hypothesis test to determine the structural dimen-
sion q. We will derive a test statistic based on Ĥ2 because the asymptotic structure of
Ĥ2 is much simpler than that of Ĥ1.

We estimate the rank of H2, which we assume to be equal to the dimension of SY |X ,
by conducting a series of hypothesis tests. Let λ1 ≥ λ2 ≥ ... ≥ λp be the eigenvalues of
H2H2

T , and consider the sequence of tests

H0 : λj+1 = ... = λp = 0, j = 0, 1, · · · , p− 1.

The rank q of H2 is the smallest value of j for which this hypothesis holds. Let λ̂1 ≥
λ̂2 ≥ ... ≥ λ̂p be the eigenvalues of nĤ2Ĥ2

T
.

We test H0 using the statistic

Tj = C−1
p∑

i=j+1

λ̂i

where C is a positive constant that depends on j and will be determined later. Relatively
large values of Tj provide evidence against H0. Tests of H0 are used to estimate the rank
q of B as follows: Beginning with j = 0 test H0. If the hypothesis is rejected, increment
j by one and test again, stopping with the first nonsignificant result. The corresponding
value of j is the estimate q̂ of q.

5.5.2 Analysis of Σ̂−1/2

As a warm up, we first note a simple fact that we have used several times, and will be
used repeatedly.

Lemma 5.2 If W1, . . . , Wn are iid E(W ) = 0 and var(W ) < ∞. Then En(W ) =
Op(n−1/2).
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Proof. By Lindeberge Levy central limit theorem,

√
n(En(W )− E(W )) =

√
nEn(W ) L−→ N(0, E(W 2)).

Therefore
√

nEn(W ) is bounded in probability. 2

Lemma 5.3

Σ̂−1/2 = I − En(ZZT − I)/2 + Op(n−1). (6)

Proof. Note that

Σ̂ = En(ZZT )− Z̄ Z̄T

= En(ZZT ) + Op(n−1)
= I + En(ZZT − I) + Op(n−1),

where En(ZZT − I) is of the order Op(n−1/2). We know that Σ̂−1/2 must be of the form
I + An for some random matrix An of the order Op(n−1/2). Therefore

(I + An)2(I + En(ZZT − I)) = I.

The left hand is

I + En(ZZT − I) + 2An + Op(n−1).

Therefore An = −En(ZZT − I)/2 + Op(n−1), as desired. 2

5.5.3 Expansion of En[ê(X − X̄)(X − X̄)T ]

In this section, we will for simplicity write Ĥ2 as Ĥ and H2 as H.

Lemma 5.4 Suppose that X has a standardized multivariate normal distribution N(0, Ip).
Then

Enê(X − X̄)(X − X̄)T = H + En

[
e(XXT − I)−H

]
+ Op(n−1).

Proof. We have

En

[
ê(X − X̄)(X − X̄)T

]
= En(êXXT )− X̄En(êXT )

−En(êX)X̄T + Op(n−1).

Because X̄ = Op(n−1/2), we need only expand En(êX) so that the error is of the order
Op(n−1/2). Note that

En(êX) = En

[(
(Y − Ȳ )− β̂T Σ̂−1/2(X − X̄)

)
X

]

= En

[
(Y − Ȳ )X

]− En

[
X(X − X̄)T

]
Σ̂−1/2β̂.
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It is easy to see that

En

[
(Y − Ȳ )X

]
= β + Op(n−1/2),

En

[
X(X − X̄)T

]
= I + Op(n−1/2),

Σ̂−1/2 = I + Op(n−1/2),

β̂ = β + Op(n−1/2).

Therefore,

En(êX) = β − β + Op(n−1/2) = Op(n−1/2).

And consequently,

Enê(X − X̄)(X − X̄)T = EnêXXT + Op(n−1). (7)

We now expand the right hand side so that the error is of the order Op(n−1). We have

EnêXXT = En

[
(Y − Ȳ )XXT

]

−En

[
β̂T Σ̂−1/2(X − X̄)(XXT )

]
. (8)

The first term on the right hand side is

En

[
(Y − Ȳ )XXT

]
= En

[
(Y − Ȳ )(XXT − I)

]

= En

[
Y (XXT − I)

]
+ Op(n−1). (9)

The second term on the right hand side of (8) is expanded as

En

[
β̂T Σ̂−1/2(X − X̄)(XXT )

]

= En

[
β̂T Σ̂−1/2(X − X̄)(XXT − I)

]

= En

[
β̂T Σ̂−1/2X(XXT − I)

]
+ Op(n−1).

The (i, j)th element of the p× p matrix on the right hand side is

p∑

k=1

(
Σ̂−1/2β̂

)
k
En [Xk(XiXj − δij)] ,

where (Σ̂−1/2β̂)k is the k element of the vector Σ̂−1/2β̂ and δij is the (i, j)th element
of the p-dimensional identity matrix I. Because X has a standard multivariate nor-
mal distribution, the expectation of Xk(XiXj − δij) is zero for any i, j, k. Therefore
En(Xk(XiXj − δij)) = Op(n−1/2), and hence if we replace the Σ̂ and β̂ by I and β then
the the error incurred has the magnitude Op(n−1). It follows then that

En

[
β̂T Σ̂−1/2(X − X̄)(XXT )

]

= En

[
βT X(XXT − I)

]
+ Op(n−1). (10)
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Now substitute (9) and (10) into (8) to obtain

En(êXXT ) = En

[
e(XXT − I)

]
+ Op(n−1).

However, note that

E
[
e(XXT − I)

]
= E(eXXT ) = H.

Hence,

En(êXXT ) = H + En

[
e(XXT − I)−H

]
+ Op(n−1),

which, combined with (7), implies that

Enê(X − X̄)(X − X̄)T = H + En

[
e(XXT − I)−H

]
+ Op(n−1), (11)

as desired. 2

5.5.4 Expansion of Ĥ2

We will continue to write H2 as H and Ĥ2 as Ĥ. From the previous two subsections we
have shown that

Σ̂−1/2 = I + An + Op(n−1)
Enê(X − X̄)(X − X̄)T = H + Bn + Op(n−1),

where

An = −En(ZZT − I)/2 + Op(n−1)
Bn = En

[
e(XXT − I)−H

]
+ Op(n−1).

Hence

Ĥ = (I + An + Op(n−1))(H + Bn + Op(n−1))
(I + An + Op(n−1))

= H + AnH + Bn + HAn + Op(n−1).

Substituting the definitions of An, Bn into the above expression to obtain the following
lemma.

Lemma 5.5 Suppose that X has a standard multivariate normal distribution. Then,

Ĥ = H + En{e(XXT − Ip)−H}
−1

2
En(XXT − Ip)H − 1

2
HEn(XXT − Ip) + Op(n−1).
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5.6 Asymptotic distribution of Tj

5.6.1 Eaton and Tyler’s result

Reference: Eaton, M. L. and Tyler, D. E. (1994). The Asymptotic Distribution of Sin-
gular Values with Applications to Canonical Correlations and Correspondence Analysis.
Journal of Multivariate Analysis 34 439–446.

Suppose B̂ and B are symmetric square matrix, and that
√

n(B̂ −B) is bounded in
probability. Suppose that B has the spectrum decomposition

B = (Ψ1, Ψ0)
(

D 0
0 0

)(
ΨT

1

ΨT
0

)
, (12)

where Ψ1 ∈ Rp×j is the matrix whose columns are eigenvectors B corresponding to its
non-zero eigenvalues, Ψ0 ∈ Rp×(p−j) is the matrix whose columns are the eigenvectors
of B corresponding to its zero eigenvalues, D ∈ Rj×j the diagonal matrix with diagonal
elements equal to the nonzero eigenvalues of B. It is easy to see that Ψ0 satisfies the
relation:

Ψ0B = 0, BΨ0 = 0. (13)

It follows from Eaton and Tyler (1994) that the joint asymptotic distribution of the p−j
smallest (in absolute value) eigenvalues of the matrix

√
nB̂ is the same as that of the

smallest eigenvalues of the matrix
√

nΨT
0 (B̂ −B)Ψ0.

Applying to our situation, we are interested in the distribution of
∑p

i=j+1 λ̂i, the sum
of the smallest eigenvalues of ĤĤ. We will introduce the vec notation: if A is a matrix
with columns a1, ...ap, then vec(A) = (aT

1 ...aT
p )T . Regarding vec, the next lemma will be

useful:

Lemma 5.6 The sum of the eigenvalues of AAT equals to

vec(A)T vec(A)

.

Proof. The sum of the eigenvalues of AAT is the same as the trace of AAT , which is

p∑

i=1

p∑

k=1

AikAik,

which is the same as vec(A)T vec(A). 2

Now the eigenvalues of
√

nΨT
0 (Ĥ −H)Ψ0

is the smallest eigenvalues (in absolute values) of
√

nĤ. So the eigenvalues of
[√

nΨT
0 (Ĥ −H)Ψ0

] [√
nΨT

0 (Ĥ −H)Ψ0

]T
(14)
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are the smallest eigenvalues of nĤĤ. So the distribution of
∑p

i=j+1 λ̂i is the same as
that of the sum of the eigenvalues of (14), which by the above lemma is the same as

vecT
[√

nΨT
0 (Ĥ −H)Ψ0

]
vec

[√
nΨT

0 (Ĥ −H)Ψ0

]
.

So it all boils down to the deriving the asymptotic distribution of

vec
[√

nΨT
0 (Ĥ −H)Ψ0

]
.

We will write the matrix
√

nΨT
0 (Ĥ −H)Ψ0 as U .

5.6.2 Tensor product between matrices

Let A and B be two matrix of arbitrary order, the tensor product between them, denoted
by A⊗B, is defined as




a11B a12B · · · a1pB
a21B a22B · · · a2pB
· · · · · · · · · · · ·

am1B am2B · · · ampB


 .

A simple fact about tensor product and vec.

Lemma 5.7 Suppose A, B, C are matrices of orders p1×p2, p2×p3 and p3×p4. Then

vec(ABC) = (CT ⊗A)vec(B).

The proof is a straightforward calculation, and is omitted.
Using tensor product we can express explicitly the variance matrix of the second

moment of a multivariate normal vector. Let X have standard multivariate normal
distribution. Then,

var(X ⊗X) = Ip ⊗ Ip + C(e1, · · · , ep),

where Ip is a p by p identity matrix and e1, · · · , ep are the standard orthonormal basis
in Rp — for example, ei is a p-dimensional vector with its ith element equal to 1 and its
other elements equal to 0, and C(e1, . . . , ep) is the matrix

C(e1, ..., ep) =




e1e
T
1 · · · epe

T
1

· · ·
e1e

T
p · · · epe

T
p


 . (15)

Regarding var(X ⊗X), we have the following lemma.

Lemma 5.8 The matrix

D = {Ip ⊗ Ip + C(e1, · · · , ep)}/2

is idempotent, and has rank p(p + 1)/2.
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PROOF. It is easy to see that

D2 = (1/4){Ip ⊗ Ip + 2C(e1, · · · , ep) + C2(e1, · · · , cp)}.

Thus D will be idempotent if C2(e1, · · · , ep) = Ip ⊗ Ip. This is indeed the case because
the (r, s) block of C2(e1, · · · , cp) is

p∑

i=1

Cri(e1, · · · , ep)Cis(e1, · · · , ep) =
p∑

i=1

eie
T
r ese

T
i = eT

r esIp,

which is the (r, s)th block of the matrix Ip ⊗ Ip.

Now recall that the rank of a projection matrix equals to its trace. Thus the rank of
D is

(1/2){tr(Ip ⊗ Ip) + tr(C(e1, · · · , ep))} = (1/2)(p2 + p) = p(p + 1)/2,

which completes the proof. 2

From this it is easy to derive the following corollary.

Corollary 5.1 Suppose Q is a projection matrix of rank k. Suppose X has p-dimensional
standard multivariate normal distribution. Then, the matrix

var(QX ⊗QX)/2

is idempotent and has rank k(k + 1)/2.

Proof. Let γ be a p× k matrix whose columns form an orthonormal bases in Q. The
Q = γγT . Hence

var(QX ⊗QX)/2 = (γ ⊗ γ)
[
var(γT X ⊗ γT X)/2

]
(γT ⊗ γT ).

Now γT X is a k-dimensional standard multivariate normal vector, and hence, by the
above lemma, var(γT X × γT X) is idempotent. Therefore,

[var(QX ⊗QX)/2] [var(QX ⊗QX)/2]
= (γ ⊗ γ)

[
var(γT X ⊗ γT X)/2

]
(γT ⊗ γT )

(γ ⊗ γ)
[
var(γT X ⊗ γT X)/2

]
(γT ⊗ γT )

= (γ ⊗ γ)
[
var(γT X ⊗ γT X)/2

]2
(γT ⊗ γT )

= (γ ⊗ γ)
[
var(γT X ⊗ γT X)/2

]
(γT ⊗ γT )

= var(QX ⊗QX)/2

Now because (γT ⊗ γT )(γ ⊗ γ) = Ik ⊗ Ik, its rank is k2. Therefore the rank of
var(γT X × γT X) is min(k2, k(k + 1)/2, k2), which is k(k + 1)/2. 2
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5.6.3 Asymptotic distribution of vec(U).

From Lemma 5.5, we have

√
n(Ĥ −H) =

√
nEn{e(XXT − Ip)−H} − 1

2
√

nEn(XXT − Ip)H

−1
2
√

nHEn(XXT − Ip) + Op(n−
1
2 ).

(We see now why we needed to expand to the order Op(n−1)). The second and the third
terms, as well as the term H in the first term, vanish once we multiply from the left by
ΨT

0 and from the right by Ψ0. And we are left with

√
nΨT

0 (Ĥ −H)Ψ0 =
√

nΨT
0 En{e(XXT − Ip)}Ψ0 + Op(n−

1
2 )

≡ √
nΨT

0 En(W )Ψ0 + Op(n−
1
2 ),

where W = e(XXT − Ip).
Note that ΨT

0 E(W )Ψ0 = 0. Therefore,

Evec
(
ΨT

0 E(W )Ψ0

)
= 0.

Also note that

ΨT
0 WΨ0 = e

(
ΨT

0 XXT Ψ0 −ΨT
0 Ψ0

)

= e
(
ΨT

0 XXT Ψ0 − Ip−j

)

Therefore,

vec
(
ΨT

0 WΨ0

)
= e

(
ΨT

0 X ⊗ΨT
0 X − vec(Ip−j)

)
.

Now

var
[
vec

(
ΨT

0 WΨ0

)]

= E
[
e2

(
ΨT

0 X ⊗ΨT
0 X − vec(Ip−j)

) (
ΨT

0 X ⊗ΨT
0 X − vec(Ip−j)

)T
]

≡ E(e2V V T ).

Suppose that pHd exhausts the central space SY |X . Then, Ψ0ΨT
0 = Q, where Q is the

orthogonal projection onto the orthogonal complement of the central space. Now the
right hand side is

E(e2V V T ) = E(E(e2|X)V V T ).

We claim that

E(e2|X) = E(e2|βT X) (16)
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This is because

E(e2|X) = E(Y 2 − 2(αT X)Y + (αT X)2|X)
= E(Y 2|X)− 2(αT X)E(Y |X) + (αT X)2.

As we have shown before, Y X|βT X implies that

E(Y |X) = E(Y |βT X) E(Y 2|X) = E(Y 2|βT X).

Therefore,

(αT X)E(Y |X) = (αT X)E(Y |βT X) = E((αT X)Y |βT X).

Also,

E((αT X)2|X) = (αT X)2 = E((αT X)2|βT X).

Thus we have shown (16). Now

E(e2V V ) = E(E(e2|X)V V T )
= E[E(e2|βT X)V V T ].

Because V is a function of ΨT
0 X, which is independent of βT X, we have E(e2|βT X) V ,

and therefore,

E(e2V V ) = E(E(e2|βT X))E(V V T ) = var(e)E(V V T ).

However, it is easy to see that

E(V V T ) = var(ΨT
0 X)).

Therefore we have

vec(U) L−→ N(0, var(e)var(ΨT
0 X)).

And consequently,

vec(U)/
√

2var(e) L−→ N(0, var(ΨT
0 X)/2). (17)

Note that ΨT
0 X has a p − j dimensional standard multivariate normal distribution.

Therefore, by Lemma 5.8, var(ΨT
0 X)/2 is idempotent and is of rank (p− j)(p− j +1)/2.

Now we need the following lemma:

Lemma 5.9 If X is distributed as multivariate normal with mean 0 and variance matrix
A, where A is an idempotent matrix. Then XT X is distributed as χ2 with rank(A)
degrees of freedom.
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Proof. Because A is symmetric and idempotent, it is a projection matrix. Let a(a1, . . . , ak)
be an orthonormal basis of the ran(A). Then, A = aaT . Therefore, aT X is distributed as
N(0, aT aaT a) = N(0, Ik). Consequently (aT X)T (aT X) is distributed as χ2

(k). Let (a, b)
be an orthonormal basis in Rp. Then

XT X = XT IpX = XT (aaT + bbT )X.

But bT X is distributed as N(0, 0); in other words, bT X ≡ 0. Therefore,

XT X = XT aaT X = (aT X)T (aT ).

Therefore, XT X is distributed as χ2
(k), as desired. 2

Now combine (17) and the above lemma, we know that

1
2var(e)

vecT (U)vec(U) L−→ χ2
(p−j)(p−j+1)/2.

Hence we have the following theorem.

Theorem 5.4 Suppose that

(a) The column space of H exhausts the Central Space; that is

span{H} = SY |X .

(b) The predictor X has a p-dimensional standard multivariate normal distri-
bution.

Then, under the null hypothesis

H0 : λp−j+1 = · · · = λp = 0,

the test statistic
∑p

i=p−j+1 λ̂i/(2var(e)) converges in distribution to a χ2 distribution with
(p− j)(p− j + 1)/2 degrees of freedom.

5.6.4 Examples

Example 5.1 Let us now apply pHd to the bigmac problem. First make a transforma-
tion of the predictors — using Box-Cox transformation. The regress Big-mac onto the
rest of the variables using pHd. One significant vector is obtained. Show the spin plot
here.

Example 5.2 Apply pHd to the ozone data. Again, remove the variables: windspeed,
visibility, and InversionHt. Use log transformation on X. Again, one significant vector is
found. Show the spin plot. In the first direction the spin plot shows a v-shaped pattern.

6 Sliced Inverse Regression

Reference: K.C. Li (1991), JASA.
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6.1 Population development

The central result of this section is that, under the linear conditional mean assumption
(Assumption 4.1), the inverse regression vector E(X|Y = y) belongs to the central
subspace.

Theorem 6.1 Suppose that Assumption 4.1 holds, and that E(X) = 0 and var(X) = Ip.
Then, for any y,

E(X|Y = y) ∈ SY |X .

Proof. Let β be the p × q matrix whose columns form an orthonormal basis in SY |X .
Then

E(X|Y ) = E(E(X|Y, βT X)|X).

Because X Y |βT X, we have that

E(E(X|Y, βT X)|X) = E(E(X|βT X)|X).

However, by Assumption 4.1 and Theorem 4.4, the L-2 projection E(X|βT X) is the
same as the Euclidean projection PβX. Therefore,

E(X|Y ) = PβE(X|Y ).

In other words E(X|Y ) belongs to ran(P ), which is the central space. 2

Corollary 6.1 Suppose that Assumption 4.1 holds, and that E(X) = 0 and var(X) = Ip.
Then the column space of the matrix

cov(E(X|Y ))

is a subspace of the central space.

Proof. Note that

cov(E(X|Y )) = cov(PβE(X|Y ))
= Pβ cov(E(X|Y ))Pβ,

which completes the proof. 2

In practice we will use the discretized version of the above results. Let I1, . . . , Ik be
a k intervals that partitions Y, the space of Y . And let Ỹ be the discretized Y , defined
by

Ỹ = i if Y ∈ Ii, i = 1, . . . , k.

We have the following result.
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Theorem 6.2 Suppose that Assumption 4.1 holds, and that E(X) = 0 and var(X) = Ip.
Then, for any i = 1, . . . , k,

E(X|Ỹ = i) ∈ SY |X .

Consequently, the column space of the matrix

cov(E(X|Ỹ ))

is a subspace of the central space.

Proof. Note that Y X|βT X implies that Ỹ X|βT X. The rest of the proof is the
same as the above. 2

6.2 Sample estimator

We will use the sample version of the matrix

var(E(X|Ỹ ))

to estimate the central space. This matrix can be written as

k∑

i=1

Pr(Ỹ = i)E(X|Ỹ = i)E(XT |Ỹ = i).

Let (X1, Y1), . . . , (Xn, Yn) be the sample and we have the following algorithm.

• Standardize Xi to Ẑi and centerize Yi to Ŷi as before.

• Partition the interval [min{Y1, . . . , Yn},max{Y1, . . . , Yn}] into k intervals, say I1, . . . , Ik,
and compute the mean of Ẑ within each slice; that is

µ̂i =
1

#(Ii)

∑

j∈Ii

Ẑj .

• Construct the SIR matrix

Ŝ =
k∑

i=1

#(Ii)
n

µ̂iµ̂
T
i .

• Assuming q is known. Let v1, . . . vq be the eigenvectors of S corresponding to the
q-largest eigenvalues. This is used to estimate SY |Z .

• Let wi = Σ̂−
1
2 vi, i = 1, . . . , q. These will be used as the estimator of SY |X .

We call this procedure the Sliced Inverse Regression, and abbreviate it by SIR. That
the SIR estimator converges at the

√
n-rate to a set of vectors in SY |X can be established

similarly, and we omit it.
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6.3 Determining q

The idea here is the same as the pHd case. ie we will decide q as the smallest j for which
we reject the hypothesis

H0 : λp−j+1 = · · · = λp = 0.

For j = 0, . . . , p− 1, let

Tj =
p∑

i=j+1

λ̂i,

where λ1 ≥ · · ·λp are the eigenvalues of the matrix nŜ. We state the following theorem
without proof.

Theorem 6.3 Suppose that

(a) k > j + 1 and p > j.

(b) The column space of S exhausts the Central Space; that is

span{S} = SY |X .

(c) Assumptions 4.1 and 5.1 hold.

Then, under the null hypothesis

H0 : λp−j+1 = · · · = λp = 0,

the test statistic
∑p

i=p−j+1 λ̂i converges in distribution to a χ2 distribution with (p −
j)(k − j − 1)/2 degrees of freedom.

The proof is in the same spirit as that for pHd, and will be omitted.

6.3.1 Examples

Example 6.1 Apply SIR to Bigmac. We find one significant vector. The sufficient plot
shows a stronger pattern than does pHd. As we will see later, pHd works the best when
there is a strong quadratic trend. Whereas SIR works the best when there is a monotone
trend.

Example 6.2 Apply SIR to the ozone data. First make log transformation. Again,
remove the three variables. One significant predictor found. The sufficient plot shows a
stronger patter than does pHd.

7 Sliced Average Variance Estimator (SAVE)

Reference: Cook & Weisberg (1991, JASA).
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7.1 Population development

SAVE is another method of estimating the central space based on slicing the response
Y . Instead of calculating the mean within each slice, this time we compute the variance.
SAVE will need both the linear conditional mean and the constant conditional variance
assumption.

Theorem 7.1 Suppose that Assumptions 4.1 and 5.1 hold and that E(X) = 0 and
var(X) = Ip. Then, for any value of y, the column space of the matrix

Ip − var(X|Y = y)

is a subspace of the central space. Consequently, the column space of the matrix

E [Ip − var(X|Y )]2

is a subspace of SY |X .

Proof. By the EV-VE formular,

var(X|Y ) = E
[
var(X|Y, βT X)|Y ]

+ var
[
E(X|Y, βT X)|Y ]

.

Because Y X|βT X, we have

E(X|Y, βT X) = E(X|βT X), var(X|Y, βT X) = var(X|βT X)

However, by the linear conditional mean assumption, E(X|βT X) = PβX. And by the
constant conditional variance assumption,

var(X|Y, βT X) = Qβ

. Therefore we have

var(X|Y ) = Qβ + Pβvar(X|Y )Pβ

= Ip − Pβ + Pβvar(X|Y )Pβ.

Subtract both sides by Ip, using the fact that Pβ is idempotent, to obtain

Ip − var(X|Y ) = Pβvar(X|Y )− Pβ

= Pβvar(X|Y )− PβIpPβ

= Pβ [var(X|Y )− Ip] Pβ.

This proves that the columns of var(X|Y )− Ip belong to the central space, as desire.
Now we have

E [var(X|Y )− Ip]
2

= PβE [var(X|Y )− Ip] PβE [var(X|Y )− Ip]Pβ.

It is easy to see that the column space of the right hand side is contained in the central
space. 2

Again, in practice we use the discretized version of this. Let Ii, i = 1, . . . , k be k
intervals that partitions Y. Let Ỹ be as defined in the SIR section. We have
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Theorem 7.2 Suppose that Assumptions 4.1 and 5.1 hold and that E(X) = 0 and
var(X) = Ip. Then, for any value of y, the column space of the matrix

Ip − var(X|Ỹ = k)

is a subspace of the central space. Consequently, the column space of the matrix

E
[
Ip − var(X|Ỹ )

]2

is a subspace of SY |X .

7.2 Sample estimator

• Standardize, and centerize, to obtain Ẑi and Ŷi, i = 1, . . . , n.

• Divide Y into k intervals, say I1, . . . , Ik. Let ni be the number of observations in
slice i; that is

ni =
∑

j∈Ii

1.

Compute, for i = 1, . . . , k,

Σ̂i =
1
ni

∑

j∈Ii

(Ẑj − µ̂i)(Ẑj − µ̂i)T .

• Construct the SAVE matrix

Û =
k∑

i=1

nk

n
Σ̂2

i .

• Find v1, . . . , vq, the eigenvalues of Û corresponding to its largest eigenvalues, and
then do a back-transformation to get w1, . . . , wq.

8 Dimension reduction for conditional mean

Reference Cook and Li (2003, Ann. Statist.); Cook and Li (2003, Ann. Statist. tenta-
tively accepted).

In many situations regression analysis is mostly concerned with inferring about the
conditional mean of the response given the predictors, and less concerned with the other
aspects of the conditional distribution. In this and the next few sections we develop
dimension reduction methods that incorporate this consideration. We introduce the
notion of the Central Mean Subspace (CMS), a natural inferential object for dimension
reduction when the mean function is of interest. We study properties of the CMS, and
develop methods to estimate it. These methods include a new class of estimators which
requires fewer conditions than pHd, and which displays a clear advantage when one of
the conditions for pHd is violated. CMS also reveals a transparent distinction among the
existing methods for dimension reduction: OLS, pHd, SIR, and SAVE. We will apply
the new methods to a data set involving recumbent cows.
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8.1 Central mean subspace.

When focusing on the conditional mean, dimension reduction hinges on finding a p× k
matrix α, k ≤ p, so that the k × 1 random vector αT X contains all the information
about Y that is available from E(Y |X). This is less restrictive than requiring that αT X
contain all the information about Y that is available from X as in the current literature
associated with the central subspace. The following definition formalizes this idea.

Definition 8.1 If
Y E(Y |X)|αT X

then S(α) is a mean dimension-reduction subspace for the regression of Y on X.

It follows from this definition that a dimension-reduction subspace is necessarily a
mean dimension-reduction subspace, because Y X|αT X implies Y E(Y |X)|αT X.
The next proposition gives equivalent conditions for the conditional independence used
in Definition 8.1.

Proposition 8.1 The following statements are equivalent:

(i) Y E(Y |X)|αT X,

(ii) Cov[(Y,E(Y |X))|αT X] = 0,

(iii) E(Y |X) is a function of αT X.

The first condition is the same as Definition 8.1. The second condition is that, given αT X,
Y and E(Y |X) must be uncorrelated. The final condition is what might be suggested
by intuition, E(Y |X) = E(Y |αT X). Any of these three conditions could be taken as the
definition of a mean dimension-reduction subspace.
Proof of Proposition 8.1 That (i) implies (ii) is immediate. That (iii) implies (i) is
also immediate, because, if E(Y |X) is a function of αT X, then, given αT X, E(Y |X) is
a constant, and hence independent of any other random variable. Now let’s prove that
(ii) implies (iii). By (ii),

E{Y E(Y |X)|αT X} = E(Y |αT X)E{E(Y |X)|αT X}.

The left hand side is

E[E{Y E(Y |X)|X}|αT X] = E{[E(Y |X)]2|αT X},

and the right hand side is {E[E(Y |X)|αT X]}2. Therefore

Var[E(Y |X)|αT X] = 0.

Thus, given αT X, E(Y |X) is a constant. 2

Paralleling the development of central subspaces, we would like the smallest mean
dimension-reduction subspace, as formalized in the next definition.
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Definition 8.2 Let SE(Y |X) = ∩Sm where intersection is over all mean dimension-
reduction subspaces Sm. If SE(Y |X) is itself a mean dimension-reduction subspace, it is
called the central mean dimension-reduction subspace, or simply the central mean sub-
space (cms).

The Central Mean Subspace enjoys the similar invariance property as does the central
space.

Proposition 8.2 If Z = AT X + b for some nonsingular matrix A and some vector b.
Then SE(Y |Z) = A−TSE(Y |X) is the cms for the regression of Y on Z.

Proof. We will use equivalent condition iii to prove this result. Suppose that β is a
p× q matrix whose columns form a basis in SE(Y |X). Then

E(Y |Z) = E(Y |X)
= E(Y |βT X)
= E(Y |βT A−T AT (X + b))
= E(Y |βT A−T Z)

So A−TSE(Y |X) is a dimension reduction space for Y versus Z; and hence SE(Y |Z) ⊂
A−TSE(Y |X). The inverse inclusion can be proved similarly. 2

So, as before, we work with the standardized predictor (E(X) = 0, var(X) = Ip).

9 Categorization of existing Dimension Reduction meth-
ods

Having established some basic properties of the CMS, we now turn our attention to
finding population vectors in that subspace. We will survey available methods for con-
structing vectors in the central subspace and demonstrate that some of them in fact
produces vectors in cms. By categorizing and assessing these methods in relation to
CMS, we set the stage for a new estimation method introduced in a later section.

9.1 Vectors in CMS

We will consider an objective function of the form R(a, b) = E[L(a + bT X, Y )] where
a ∈ R and b ∈ Rp. Here, the expectation is with respect to the joint distribution of
Y and X. This use of an objective function is not meant to imply that any associated
model is true or even provides an adequate fit of the data. Nevertheless, there is a useful
connection between SE(Y |Z) and the vectors derived from these objective functions.

Let
(α, β) = arg min

a,b
R(a, b) (18)

denote the population minimizers, and let η be a basis matrix for SY |Z .

42



We restrict attention to objective functions

L(a + bT X, Y ) = −Y (a + bT X) + φ(a + bT X) (19)

based on the linear exponential family for some strictly convex function φ, then β always
belongs to SE(Y |X).

Theorem 9.1 Let γ be a basis matrix for SE(Y |X), assume that E(X|γT X) is a linear
function of X and let β be as defined in (18) using an exponential family objective
function (19). Then β ∈ SE(Y |X).

The exponential family objective function (19) covers many estimation methods used
in practice. In particular, OLS is obtained by setting φ(K) = K2/2.
Proof of Theorem 9.1 We first rewrite R(a, b) making use of the fact that γ is a basis
for the central mean subspace:

R(a, b) = E[−Y (a + bT X) + φ(a + bT X)]
= E[−E(Y |γT X)(a + bT X) + φ(a + bT X)]
≥ E[−E(Y |γT X)(a + bT E(X|γT X)) + φ(a + bT E(X|γT X))]
= E[−Y (a + bT PγX) + φ(a + bT PγX)].

The second equality follows because γ is a basis for SE(Y |X). The inequality follows
because of convexity. The next equality stems from the linearity of E(X|γT X) which is
equivalent to requiring that E(X|γT X) = PγX, where Pγ is the projection onto SE(Y |X)

with respect to the usual inner product.
Thus,

R(a, b) ≥ R(a, Pγb)

and the conclusion now follows because β is unique. 2

The next theorem shows that the pHd vectors are actually in CMS.

Theorem 9.2 Suppose that Assumptions 4.1 and 5.1 hold and that E(X) = 0 and
var(X) = Ip. Then the column space of H1 (the y-based pHd) (or H2 (the e-based pHd))
is a subspace of SE(Y |X).

Proof. The proof is essentially the same as before, when we proved that the column
space of H1 (H2) is a subspace of the central space. Recall that the key step there was
the fact that

E(Y |X) = E(Y |βT X) or E(e|X) = E(e|βT X).

We proved this by using the assumption Y X βT X. However, in the present
case this follows directly from the definition of the CMS: E(Y |X) = E(Y |βT X). That
E(e|X) = E(e|βT X) can also be proved using this definition and an argument similar
to the pHd theorem for central space. 2
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9.2 Vectors in CS but not in CMS

Here we point out that the SIR and SAVE vectors may not belong to CMS, though SIR
belongs to CS under Assumption 4.1 and SAVE belongs to CS under Assumptions 4.1
and 5.1.

Recall that in proving the that SIR and SAVE are in the central space we used the
fact that

E(X|Y, βT X) = E(X|βT X).

This is deduced from X Y |βT X. However, this cannot be deduced from the definition
of the CMS, which is E(Y |X) = E(Y |βT X).

Similarly in the derivation of CS, we used, in addition, the fact

var(X|βT X, Y ) = var(X|βT X),

which, again, is deduced from X Y |βT X but cannot be deduced from the definition of
CMS.

Hence SIR and SAVE vectors need not be in CMS. In summary, we have the following
table:

LCM CCV
CMS OLS pHd
CS SIR SAVE

In a sense, if in a regression analysis we are mainly interested in the conditional mean
and not the conditional distribution itself, then CMS is the parameter of interest and CS
\ CMS is the nuisance parameter. Thus OLS and pHd can be viewed as the estimator
of the parameter of interest.

10 Iterative Hessian Transformation

We see that OLS and pHd estimate CMS but SIR and SAVE may estimate the whole
space CS. However, OLS can only estimate one direction. If the response is binary, the
SIR can only estimate one direction. However, if we are only willing to use the LCM,
and we think there are more vectors in the dimension reduction space, what should we
do ?

Theorem 10.1 Suppose that Assumption 4.1 holds and that E(X) = 0 and var(X) =
Ip. Then the central mean space is an invariant subspace of the linear transformation
v 7→ Hv (where H can be either H1 or H2). In symbols,

H1SE(Y |X) ⊂ SE(Y |X) H2SE(Y |X) ⊂ SE(Y |X).
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Proof. We only prove this for H = H1, the other case can be proved similarly. We will
write H1 as H. Let β be a matrix whose columns form a basis in SE(Y |X). Let v be a
vector in SE(Y |X) . We need to show that Hv also belongs to SE(Y |X). Note that

Hv = E(Y XXT v)
= E(E(Y |X)X(XT v))
= E(E(Y |βT X)X(XT v))
= E(Y E(XXT X|βT X))

Because v is a vector in SE(Y |X), vT X is a function of βT X. Therefore, the right hand
side is

E(Y E(X|βT X)vT X) = E(Y PβXvT X)
= PE(Y XXT v)
= PHv.

Thus Hv is equal to its projection, and therefore must be a vector in ran(Pβ). 2

The point of this theorem is that only one assumption — Assumption 4.1 is needed
for SE(Y |X) to be an invariant subspace. Therefore, if we can find a “seek vector” in
SE(Y |X) under Assumption 4.1, then the process can bring out other vectors in SE(Y |X)

without evoking the Assumption 5.1. Note that the ols vector α = E(XY ) belongs to
SE(Y |X) (or for that matter any vector given in the OLS theorem for CS).

Corollary 10.1 Under Assumption 4.1

(i) Span{Hj
1 α : j = 0, 1, ...} ⊆ SE(Y |X), and

(ii) Span{Hj
2 α : j = 0, 1, ...} ⊆ SE(Y |Z).

Because this method is based on Iterative transformation of a seed vector by the
Hessian matrix, we call it the Iterative Hessian Transformation estimator of the central
mean space.

One question that remains is how large j must be in order for the first j vectors,
βyz, ..., Σj−1

yzz βyz, to exhaust all possible vectors in the sequence. This is important
because in practice we can compute only a finite number of these vectors. This question
is answered by the next proposition; its proof is straightforward and omitted.

Proposition 10.1 Let A be a p × p matrix and α be a p-dimensional vector. If Ajα
belongs to the subspace spanned by α, ..., Aj−1α, then so does Asα for any s > j.

Proof. Suppose Ajα belongs to the subspace spanned by α, ..., Aj−1α. Then there is
a vector w ∈ Rj such that

Ajα = (α, ..., Aj−1α)w.
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Then

Aj+1α = A(Ajα)
= A(α, ..., Aj−1α)w
= (Aα, ..., Ajα)w
= (Aα, ..., Aj−1α, (α, ..., Aj−1α)w)w.

However, the right hand side is obviously a linear combination of α, ..., Aj−1α. 2

Since Hj α belongs to SE(Y |X), which has dimension q, Proposition 10.1 implies that
there is an integer s ≤ q such that the first s vectors in the sequence, α, ..., Hs−1α, are
linearly independent, and all the subsequent vectors are linearly dependent on them. In
particular, we can focus on the vectors α, ..., Hp−1α without missing any vectors in the
subsequent iteration.

This suggests the following estimation scheme :

• Standardize and centerize as before, to get Ẑ’s and Ŷ ’s.

• Construct the OLS estimator α̂ based on Ẑ and Ŷ , as described before.

• Construct Hessian matrix Ĥ based on Ŷ , Ẑ, as before. Here Ĥ can be either Ĥ1

or Ĥ2.

• Let

B̂ = (α̂, . . . , Ĥp−1α̂).

Assuming q is known, let v1, . . . , vq be the eigenvectors of B̂B̂ corresponding to its
q largest eigenvalues. This is used to estimate SE(Y |Z).

• Transforming them back, as described before, to estimate the original space SE(Y |X).

For a numerical illustration, we generated 200 observations on 5 predictors and a
response as follows:

X1 = ε1

X2|X1 = X1 + ε2

X3 = ε3

X4|X2 = (1 + X2/2)ε4

X5 = ε5

Y = X1 + X2
2/2

All errors εk are independent standard normal random variables. The response Y was
generated without error to emphasize the qualitative nature of the results. The CMS
is spanned by (1, 0, 0, 0, 0)T and (0, 1, 0, 0, 0)T . Assumption 4.1 holds, but 5.1 does not
hold because var(X4|X2) = (1 + X2/2)2. Table 1 gives the first two pHd directions, ĥ1

and ĥ2, and the first two sample IHT directions, û1 and û2. pHd found X2 and X4
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Table 1: Sample pHd directions ĥ1 and ĥ2 and IHT directions û1 and û2 from the
simulated data.

ĥ1 ĥ2 û1 û2

X1 −0.098 0.166 0.022 −0.996
X2 −0.984 −0.011 0.999 0.024
X3 0.050 0.151 0.001 0.062
X4 −0.142 −0.974 0.032 −0.016
X5 −0.017 0.035 0.016 0.017

to be the important predictors, while IHT correctly picked X1 and X2. In effect, pHd
missed the linear component in favor of the quadratic component and X4. Figure 1 gives
a visual representation of these results. The response surface from IHT gives a very
good representation of the true surface, while the surface for pHd shows only a relatively
rough quadratic.

11 Local methods

11.1 Minimum Average Variance Estimator (MAVE)

Xia, Tong, Li, and Zhu (2002 JRSS-B). This is based on the minimization of the expec-
tation of conditional variance. That is, to minimize

E{var(Y |γT X)}.

over all γ ∈ Rp×q.
Sample estimate: Replace conditional expectation by kernel estimators (or polyno-

mial regression estimate). Then minimize the approximated objective function.

11.2 Structural Adaptive Estimator (SAE)

Hristache, Juditsky, Polzehl, and Spokoiny (2001, AOS). This method is based on the
following fact. If a function f(x) depends on x only through βT x, then the family of
gradients:

{∂f(x)/∂x : x ∈ X}

span the column space of β. At the sample level, the gradient are estimated by local
linear regression. Then a principal component analysis is conducted on the gradient
vectors.
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11.3 Summary and comparison

The advantages of the global methods, such as OLS, pHd, SIR, SAVE, and IHT, are
(1) they are

√
n-consistent, (2) they are simple to compute. The drawbacks (1) they

are not guaranteed to be exhaustive. That is, they may estimate a set of vecotrs that,
though belong to the Central Subspace, need not span the central subspace. (2) they
require the predictor to satisfy L.C.M. and/or C.C.V., which can be restrictive for some
applications.

In comparison, the global methods such as MAVE and SAE are under reasonable
conditions exhaustive, and do not require L.C.M. and C.C.V. However, they are in
general not

√
n-consistent, and their computation is more difficult.

12 Contour Regression

The global methods above are
√

n-consistent and computationally inexpensive, due to
the fact that they exploit global features of the dependence of Y on X, as captured
by mixed moments estimated on the data. Note that the

√
n-consistency is achieved

regardless of the original dimension p and the structural dimension q. This important
property hinges on the fact that the dimension reduction problem is intrinsically global,
in the sense that the response surface is constant along the p− q dimensional orthogonal
complement of the central subspace. The above methods achieve the

√
n rate precisely

because they exploit this global property.
The methods also have common limitations. First, all of them require linearity of the

mean relationships among predictors along the central subspace. When this condition
fails, the methods may produce estimates that converge at the

√
n rate to directions

outside SY |X . Because violations of this condition cannot be diagnosed prior to esti-
mating β, it is often replaced by the more restrictive assumption that X be elliptically
distributed. Ellipticity guarantees linearity of the mean relationships among predictors
along any subspace, and can be at least partially diagnosed and remedied.

Second, none of the methods is guaranteed to be exhaustive: the estimates are
√

n-
consistent for vectors in SY |X , but these vectors may not span the whole central subspace.
This is arguably one of the most important shortcomings of these methods. An instance
is the heavy reliance of methods such as OLS and SIR on linear trends in the dependence
of Y on X. For example, if Y = (βT X)2 + ε with β ∈ Rp and X ∼ N(0, Ip), OLS and
SIR will estimate 0 ∈ SY |X = span(β), but fail to detect β itself.

The adaptive methods relax the assumptions on X and achieve exhaustiveness but
do not have

√
n-consistency in general.

Here, we target directly the contour directions of the response surface. Contour di-
rections are those along which the response has small variation; they span the orthogonal
complement of the central subspace. They can be extracted according to two measures
of variation in the response, leading to two methods: Simple and General Contour Re-
gression (SCR and GCR). Contour Regression guarantees exhaustive estimation of the
central subspace under ellipticity of X and very mild additional assumptions. It also
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proves robust to violations of ellipticity. Moreover, Contour Regression achieves
√

n-
consistency regardless of the dimensions p and q and are computationally inexpensive.

13 Simple contour regression

Let (X1, Y1), ..., (Xn, Yn) be independent copies of the random pair (X,Y ), where X ∈ Rp

and Y ∈ R. Let Fn denote the empirical distribution based on the data, and FXY be
the joint distribution of (X, Y ). We will be concerned with matrix-valued estimators
of the form T (Fn). If the columns of T (FXY ) belong to SY |X , then we say T (Fn) is
unbiased at the population level. If the columns of T (FXY ) actually span SY |X , then
we say that T (Fn) is exhaustive at the population level. If T (Fn) converges at the

√
n

rate to T (FXY ) in the first case, then we say it is
√

n-consistent. If the
√

n convergence
holds in the second case, then we say T (Fn) is

√
n-exhaustive.

13.1 The estimator

Let (X̃, Ỹ ) be an independent copy of (X,Y ) and suppose that the central subspace
SY |X for the regression of Y on X is spanned by the column space of a p × q matrix β
with q < p. Consider the matrix

K(c) = E
[
(X̃ −X)(X̃ −X)T

∣∣∣ |Ỹ − Y | ≤ c
]
.

We will show that, for sufficiently small c > 0, the eigenvectors of K(c) corresponding
to its smallest q eigenvalues span the central subspace. For this purpose, we need the
following assumption.

Assumption 13.1 For any choice of vectors v ∈ SY |X and w ∈ (SY |X)⊥ such that
‖v‖ = ‖w‖ = 1, and any sufficiently small c > 0, we have

var
[
wT (X̃ −X)

∣∣∣ |Ỹ − Y | ≤ c
]

> var
[
vT (X̃ −X)

∣∣∣ |Ỹ − Y | ≤ c
]

(20)

This assumption is a reasonable one: because the conditional distribution of Y |X
depends on vT X but not on wT X, we expect Y to vary more with vT X than it does
with wT X. Hence, intuitively, within the same increment of Y , wT X should vary more
than vT X does. In Section 14 we will prove that Assumption 13.1 holds under fairly
general conditions. Here we give a few examples to illustrate its wide applicability.

Example 13.1 Suppose X = (X1, X2)T ∼ N(0, I2) and Y = X2
2 + ε, with ε X and

ε ∼ N(0, σ2). For this regression SY |X is the one-dimensional span of β = (0, 1)T . We
verified numerically that the above sufficient condition holds.

Example 13.2 Let X = (X1, X2)T and ε be as in Example 13.1, and Y = (X2 −
1)3 + ε. We used again numerical integration to verify the sufficient condition for c =
0.1, 0.5, 1, . . . , 3 and σ = 0.1, 0.2, 0.3, . . . , 2, and again obtained values below 2 in all
cases.
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We checked numerically numerous other f(·) functions such as polynomials, expo-
nential and logorithmic functions, trigonometric functions, etc., never encountering a
violation of Assumption 13.1.

In the next theorem we prove that if X is elliptically contoured and Assumption 13.1
holds, then the population vectors from SCR exhausts the central subspace SY |X . We
first consider the standardized X.

Theorem 13.1 Suppose that X has an elliptical distribution with E(X) = 0 and var(X) =
Ip. If Assumption 13.1 holds, then, for a sufficiently small c, the eigenvectors of K(c)
corresponding to its smallest q eigenvalues span the central subspace SY |X .

The estimating procedure will mimick the theoretical development in Section 13.1:

• Compute sample mean and variance matrix of the predictor X

µ̂ = n−1
n∑

i=1

Xi, Σ̂ = n−1
n∑

i=1

(Xi − µ̂)(Xi − µ̂)T .

• compute the matrix-valued U-statistic

Ĥ(c) = 1(
n
2

)
∑

(i,j)∈N

(Xj −Xi)(Xj −Xi)T I(|Yj − Yi| ≤ c), (21)

where N is the index set {(i, j) : i = 2, . . . , n; j = 1, . . . , i− 1}.
• Compute the spectral decomposition of Σ̂−1/2Ĥ(c)Σ̂−1/2 and let γ̂p+q−1, . . . , γ̂p be

the eigenvectors corresponding to the smallest q eigenvalues.

• The span of these eigenvectors estimates SY |Z , where Z is the standardized version
of X. Thus, our estimate of the central subspace is

ŜY |X = span(Σ̂−1/2γ̂p−q+1, . . . , Σ̂−1/2γ̂p).

Theorem 13.2 Suppose that Σ is nonsingular and that the components of X have finite
fourth moments. Then

Σ̂−1/2Ĥ(c)Σ̂−1/2 = Σ−1/2H(c)Σ−1/2 + Op(n−1/2).

As a consequence of this theorem, γ̂p−q+1, . . . , γ̂p are a
√

n-exhaustive estimator of
SY |Z , and hence Σ̂−1/2γ̂p−q+1, . . . , Σ̂−1/2γ̂p are a

√
n-exhaustive estimator of SY |X .
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14 Exhaustive estimation

In order to place the theory of Simple Contour Regression on a firmer foundation we
devote this section to deriving a sufficient condition for Assumption 13.1. As shown
in the previous sections, if this assumption holds, then SCR provides

√
n-exhaustive

estimation of the central subspace SY |X . Sufficient conditions of this type are extremely
elusive – to our knowledge none has been established with reasonable generality for the
other

√
n-consistent estimators such as OLS, PHD, SIR or SAVE.

We will need the notion of stochastic ordering. Let S and T be two random variables.
We say that S is stochastically less than or equal to T if, for any real number r, Pr(S ≤
r) ≥ Pr(T ≤ r), and write this as S ≤d T . If, in addition, the inequality is strict on a
subset of the real line with positive Lebesgue measure, we say that S is stochastically
(strictly) less than T and write S <d T . The following lemma is obvious, and its proof
will be omitted.

In developing a sufficient condition for Assumption 13.1, consider the location struc-
ture Y = f(βT X) + ε with ε X and E(ε) = 0. Ultimately, the sufficient condition
will be imposed on the behavior of f(·). Let (X̃, ε̃) be an independent copy of (X, ε),
∆ = X̃ −X, T = ε̃ − ε. and FT (·) be the cumulative distribution function of T . Write
f(βT x) merely as g(x).

Theorem 14.1 Suppose that X has an elliptically contoured distribution with E(X) = 0
and var(X) = Ip, and that C.C.V. holds. Moreover, suppose that the density fT (t) of
FT (t) decreases as |t| increases. If, for any α ∈ SY |X , and whenever 0 ≤ δ1 < δ2, we
have

|g(X + ∆)− g(X)|
∣∣∣ {|αT ∆| = δ1}

<d |g(X + ∆)− g(X)|
∣∣∣ {|αT ∆| = δ2}. (22)

then 13.1 holds for every c > 0.

To understand the intuition behind condition (22), first consider the case where X
is a scalar random variable. Intuitively, condition (22) should hold trivially if g is a
monotone function, because it holds pointwise in X = x with <d replaced by ordinary
inequality < (see Example 14.1 below). However, condition (22) by no means restricts
g(·) to be monotone, because being stochastically large or small is an average behaviour
of all values of X, and is not necessarily being large or small for every single value of
X = x. It then does seem to make sense to assume that g(X + ∆) is collectively farther
away from g(X) if ∆ is larger: this is simply requiring g to be reasonably variable. In the
multivariate case, condition (22) requires this to hold along any direction α in the space
SY |X , which is the space along which g(x) does vary. Also the requirement that fT (t)
decreases with |t| is not a severe restriction, considering that this density is symmetric
about 0 by construction.
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Example 14.1 Suppose that f(x2) is a continuous and monotone function, which, with-
out loss of generality, can be assumed to be monotone increasing. Then the sufficient
condition is satisfied.

Example 14.2 Let f(x2) = (x2−a)2. Example 13.1 is a special case of this model with
a = 0 and ε ∼ N(0, σ2). Then the sufficient condition is satisfied.

15 General contour regression

15.1 Estimation

The idea underlying SCR is to use the inequality |Y − Ỹ | ≤ c to identify vectors aligned
with the contour directions. However, this inequality also picks up other directions
when the regression function is non-monotone. Under ellipticity, such directions are
averaged out, so that the method remains

√
n-exhaustive. Nevertheless, these “wrong”

directions do tend to decrease efficiency by blurring up the “right” ones. In other words,
the inequality |Y − Ỹ | ≤ c is not a very sensitive contour identifier for non-monotone
functions – even though it is sufficiently sensitive to maintain

√
n-exhaustiveness. We

now illustrate this point using the model in Example 13.1.
To construct the left panel of Figure 1, we generated twenty observations (Xi, Yi)

i = 1, . . . , 20 according to the model in Example 13.1, with σ = 0.3. We then used the
threshold value c = 0.5, connecting by a solid line segment any two points (Xi, Xj)T ∈ R2

satisfying |Yi − Yj | ≤ 0.5. Roughly speaking , SCR picks up the contour directions by
a Principal Component Analysis of the vectors represented by these line segments. We
see that, though most of the segments are horizontal (i.e. aligned with the true contour
direction), there are a considerable number of segments pointing to arbitrary directions.
This is because Y is roughly U-shaped and the inequality |Yi − Yj | ≤ 0.5 does not
discriminate between the segments aligned with the contour and those across the U-
shaped surface that also have small increments in Y . Though the arbitrary directions
tend to average out due to the ellipticiy of the distribution of X, they make the picture
less sharp, and the method less efficient.

To overcome this drawback we replace the contour identifier |Yi − Yj | ≤ c by a more
sensitive one. Consider the variance of Y along the line through xi and xj . Formally,
let `(t;xi, xj) = (1− t)xi + txj , t ∈ R, be the straight line that goes through xi and xj ,
and define

V (xi, xj) = var (Y |X = `(t;xi, xj) for some t ) .

We will aim at identifying the contour vectors by the smallness of this conditional vari-
ance.

The next task is to construct a sample estimate of V (Xi, Xj). We will denote the
line `(·; Xi, Xj) by `(Xi, Xj). For any Xk, let d(Xk, `(Xi, Xj)) be the Euclidean distance
between Xk and the line `(Xi, Xj); that is,

d(Xk, `(Xi, Xj)) = min
t∈R

‖Xk − `(t; Xi, Xj)‖ ,
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where ‖ · ‖ stands for the Euclidean norm. Because ‖Xk − `(t; Xi, Xj)‖2 is a quadratic
function of t, this minimum distance can be expressed explicitly as

d(Xk, `(Xi, Xj)) =
‖Xk −Xi‖2 − {

(Xk −Xi)T (Xj −Xi)
}2

‖Xj −Xi‖2
.

For any ρ > 0, we define the cylinder of radius ρ connecting Xi and Xj to be the set

Cij(ρ) = {Xk : d(Xk, `(Xi, Xj)) ≤ ρ, k = 1, . . . , n} .

According to this definition, each cylinder contains at least 2 points in the sample. Next,
we estimate the variance of Y along these cylinders. Let nij(ρ) be the number of points
in the cylinder Cij(ρ), and let

V̂ (Xi, Xj ; ρ) =
1

nij(ρ)

∑

Xk∈Cij(ρ)

(
Yk − Ȳij(ρ)

)2
,

where Ȳij(ρ) =
1

nij(ρ)

∑

Xk∈Cij(ρ)

Yk.

We can now identify the contour directions by the smallness of V̂ (Xi, Xj ; ρ).
Plotted in the right panel of Figure 1 are the same sample points as in the left panel,

but with the line segments picked up by V̂ (Xi, Xj ; ρ) ≤ c, where c = 0.5 and ρ = 0.3.
We can see that many of the segments pointing to random directions in the left panel
have been removed. To get a quantitative comparison, we calculated the first principal
component for the line segments in each panel, which equals (0.9169, 0.3991)T for the
left panel and (0.9991,−0.0417)T for the right panel. The latter is much closer to the
direction (1, 0)T , the population vector orthogonal to SY |X .

We now construct the estimator of SY |X . We standardize the predictor observations
to Ẑi = Σ̂−1/2(Xi − µ̂), and form the matrix

F̂ (c) = 1(
n
2

)
∑

(i,j)∈N

(Ẑj − Ẑi)(Ẑj − Ẑi)T I(V̂ (Ẑi, Ẑj ; ρ) ≤ c), (23)

where N is the same index set as used in (21). As in SCR, we take the spectral decom-
position of F̂ (c), and use γ̂p+q−1, . . . , γ̂p, the eigenvectors corresponding to the smallest
q eigenvalues, to form

ŜY |X = span(Σ̂−1/2γ̂p−q+1, . . . , Σ̂−1/2γ̂p).

15.2 Population-level exhaustiveness

Assume that X is already standardized to E(X) = 0 and var(X) = Ip (so Z is X itself).
The population version of the matrix F̂ (c) in (23) is

F (c) = E[(X − X̃)(X − X̃)T I(V (X, X̃) ≤ c)],
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which is proportional to the matrix

G(c) = E
(
(X − X̃)(X − X̃)T

∣∣∣V (X, X̃) ≤ c
)

.

Here we will demonstrate that, for sufficiently small c, the eigenvectors corresponding
to the smallest q eigenvalues of G(c) span SY |X . For this purpose, we introduce an
assumption that parallels Assumption 13.1. Again, (X̃, Ỹ ) indicates an independent
copy of (X,Y ).

Assumption 15.1 For any choice of vectors v ∈ SY |X and w ∈ (SY |X)⊥ such that
‖v‖ = ‖w‖ = 1, and any sufficiently small c > 0, we have

var
[
wT (X̃ −X)

∣∣∣V (X, X̃) ≤ c
]

> var
[
vT (X̃ −X)

∣∣∣V (X, X̃) ≤ c
]
. (24)

The interpretation of this assumption is similar to that of Assumption 13.1. We now
deduce population exhaustiveness under this assumption. Once again, we do so for a
spherical predictor without loss of generality.

Theorem 15.1 Suppose that X has an elliptical distribution with E(X) = 0 and var(X) =
Ip. Then, under Assumption 15.1, for sufficiently small c > 0, the eigenvectors of G(c)
corresponding to its smallest q eigenvalues span the central subspace SY |X .

15.3 Sufficient conditions for exhaustive estimation

Next, following a reasoning similar to that in Section 14, we derive a sufficient condition
for Assumption 15.1.

Theorem 15.2 Suppose that X has an elliptically-contoured distribution with E(X) = 0
and var(X) = Ip. Then Assumption 15.1 is satisfied for all sufficiently small c > 0 for
which {(x, x̃) : V (x, x̃) ≤ c} is a non-empty set.

The conditions in Theorem 15.2 are much weaker than those in Theorem 14.1. C.C.V.
is not required in Theorem 15.2, and essentially no requirement is posed on the behavior
of the mean function and the error term. Thus, GCR will be exhaustive under settings
even more general than SCR.

16 Non-ellipticity

The population exhaustiveness of our contour-based methodology relies on ellipticity of
the predictor distribution. This is because in the theoretical development we have treated
the constant c in (21) and (23) as fixed with respect to the sample size n. Ellipticity of the
distribution of X helps to balance out the effect of those line segments not aligned with
the contour directions. However, especially when using GCR, whose contour identifier
is more sensitive, we can obtain good performance even under violations of ellipticity.
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We will show that the eigenvectors corresponding to the smallest p − q eigenvalues
of the matrix

A = E
(
(X̃ −X)(X̃ −X)T

∣∣∣V (X, X̃) = σ2
)

span the orthogonal complement of the central subspace, (SY |X)⊥, even when X is not
elliptical. This suggests that if we let c decrease to σ2 as n increases, then the eigenvec-
tors corresponding to the smallest p − q eigenvalues of F̂ (c) in (23) (after appropriate
transformation by Σ̂−1/2) will tend to recover the whole SY |X , regardless of the shape of
the distribution of X. In practice, if we make c small (i.e. close to the smallest value of
V̂ (Ẑi, Ẑj) in (23)), then GCR is likely to estimate the central subspace exhaustively and
effectively even if the shape of X does not help the process by averaging out erroneous
directions, as is the case under ellipticity.

Theorem 16.1 Suppose that X is a continuous random vector with an open support
X ⊂ Rp. Then the matrix A has exactly p− q zero eigenvalues, and their corresponding
eigenvectors span (SY |X)⊥. In symbols,

ker(A) = SY |X

where ker(A) = {h ∈ Rp : Ah = 0} is the kernel of A.

17 Simulation results

We now compare the performance of both versions of Contour Regression, SCR and GCR,
with that of well known existing dimension reduction methods ensuring

√
n-consistency,

such as OLS, SIR, PHD, and SAVE. For such comparisons, we need to introduce a
measure of distance between two subspaces of Rp. Let S1 and S2 be two q-dimensional
subspaces of Rp and PS1 , PS2 be the orthogonal projections onto S1 and S2, respectively.
A reasonable measure of distance between them is

dist(S1,S2) = ‖PS1 − PS2‖,

where ‖ · ‖ is the the Euclidean norm, i.e., the maximum singular value of a matrix.

Example 17.1 Consider the regression

Y = X2
1 + X2 + σε,

where X ∼ N(0, I4), ε ∼ N(0, σ2) and ε X. Here, the central subspace is of dimension
q = 2, and is spanned by the vectors (1, 0, 0, 0)T and (0, 1, 0, 0)T . We compare SCR and
GCR with SIR, SAVE, and PHD using σ = 0.1, 0.4, and 0.8. For each error value of σ,
we draw 500 samples of size n = 100, and on each sample we apply the five estimation
techniques to produce five estimates of SY |X .
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Table 1: Comparison of SCR and GCR and other estimates for Example 17.1

SCR GCR SIR SAVE PHD
σ DIST SE DIST SE DIST SE DIST SE DIST SE

0.1 0.23 0.11 0.16 0.07 0.78 0.24 0.43 0.25 0.80 0.21
0.4 0.25 0.11 0.20 0.08 0.79 0.23 0.54 0.27 0.79 0.21
0.8 0.31 0.13 0.32 0.16 0.80 0.23 0.73 0.25 0.79 0.21

18 An application

We consider data collected for Massachusetts four-year colleges in 1995, in an attempt to
investigate how the percentage of freshmen that graduate (Grad) depends on variables
measuring quality of incoming students and features of the colleges. There are n =
46 colleges and p = 7 predictors, which are: the percentage of freshmen that were
among the top 25% percent in their graduating high school class (Top25), the median
mathematics SAT score (MSAT), the median verbal SAT score (VSAT), the percentage
of applicants accepted by the college (Accept), the percentage of accepted applicants
who enroll (Enroll), the student-to-faculty ratio (SFRatio), and the out-of-state tuition
(Tuition).

The scatter-plot matrix in Figure 2 reveals obvious curvatures in the mean depen-
dencies among predictors. There appear to be violation of ellipticity. As discussed in
Section 1, if these patterns lack a marked linear component along some of the direc-
tions they comprise, these directions may be missed by non-exhaustive methods that
rely heavily on linear trends (e.g. SIR) even when ellipticity holds.

We apply GCR to the data set, taking the tube size to be ρ = 0.03 and including
4n = 184 pairs of predictor differences with the smallest V̂ (Ẑi, Ẑj ; ρ) values. This gives
eigenvalues 2.1866, 3.6160, 7.6274, 7.7670, 8.6623, 9.6466 and 10.5777. Even though we
do not have a rigorous testing theory at this stage, the clear separation between the first
two eigenvalues and the following five allows us to infer the existence of two relevant
directions, which correspond to the estimated linear combinations

GCR1 = −0.6331(Top25) + 0.0168(MSAT) + 0.1519(VSAT) + 0.4068(Accept)
−0.0726(Enroll) + 0.6365(SFRatio) + 0.0004(Tuition)

GCR2 = +0.1915(Top25)− 0.0605(MSAT) + 0.1336(VSAT) + 0.8642(Accept)
−0.1622(Enroll)− 0.4106(SFRatio) + 0.0011(Tuition)

Views of the 3D plot of Grad vs GCR1 and GCR2 are given in Figure 3 , revealing
a peculiar “coiled” structure for the dependence of the response on the reduced pre-
dictors. While the linear component along GCR1 is strong (R-square approximately
56%), that along GCR2, which shows the bending of the coil, is much weaker (R-square
approximately 8%).

Indeed, SIR applied to the same data unambiguously detects the first direction: the
sample correlation between SIR1 (the first vector of SIR) and GCR1 is around 0.98, and
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the p-value from the asymptotic chi-square test for SIR1 below 0.01, regardless of the
number of slices employed in the SIR algorithm. However, SIR produces more ambiguous
results on the existence of a second relevant direction, with p-values ranging between
0.10 and 0.30 depending on the number of slices.
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